Clinical Trials Logo

Clinical Trial Summary

Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality worldwide, with rates of CRC predicted to increase. Colonoscopy is currently the gold standard of screening for CRC. Artificial intelligence (AI) is seen as a solution to bridge this gap in adenoma detection, which is a quality indicator in colonoscopy. AI systems utilize deep neural networks to enable computer-aided detection (CADe) and computer-aided classification (CADx). CADe is concerned with the detection of polyps during colonoscopy, which in turn is postulated to help decrease the adenoma miss-rate. In contrast, CADx deals with the interpretation of polyp appearance during colonoscopy to determine the predicted histology. Prediction of polyp histology is crucial in helping Clinicians decide on a "resect and discard" or "diagnose and leave strategy". It is also useful for the Clinician to be aware of the predicted histology of a colorectal polyp in determining the appropriate method of resection in terms of safety and efficacy. While CADe has been studied extensively in randomized controlled trials, there is a lack of prospective data validating the use of CADx in a clinical setting to predict polyp histology. The investigators plan to conduct a prospective, multi-centre clinical trial to validate the accuracy of CADx support for prediction of polyp histology in real-time colonoscopy.


Clinical Trial Description

Colonoscopy is currently the gold standard of screening for CRC. A 1% increase in adenoma detection rate (ADR) estimated to be associated with a 3% decreased risk of interval CRC. AI systems can be broadly divided into CADe (for detection) and CADx (for diagnosis, or prediction of polyp histology in the context of colonoscopy). CADe has been extensively studied, with several randomized controlled trials and meta-analysis showing a higher ADR when CADe is used compared to the control groups without CADe. Besides the ADR, predicted polyp histology is a key component in the performance of colonoscopy as this enables the Clinician to make a decision regarding its management, as described above. In this regards, image-enhanced endoscopy (IEE) is often used to help Clinicians determine if colorectal polyps found on colonoscopy are neoplastic or hyperplastic. The most commonly used non-magnification classification is the NBI International Colorectal Endoscopic (NICE), while the Japan NBI Expert Team (JNET) classification is used where endoscopy systems with optical magnification and the proper training is available. However, these classification systems have varying diagnostic accuracy and interobserver agreement. Previous prospective studies looking at CADx have utilized endocytoscopy and autofluorescence imaging (CAD-AFI) with positive results. However, the major limitation in these CADx studies is that these imaging systems are costly and are not readily available in most centres worldwide. Furthermore, most Clinicians performing colonoscopies have not been trained in these modalities of imaging and will have to rely completely on the CADx function to detect polyps if these imaging modalities are used, without being able to fall back on their experience and training should there be doubts about the accuracy of a CADx diagnosis in a real-world setting. The Fujifilm 7000 System (Fujifilm Corp., Tokyo) has been in routine clinical use in all tertiary institutions in Singapore. The CAD EYE system was developed by Fujifilm Corp to aid Clinicians in colonoscopy with CADe and CADx functions. The basic functions and handling of the colonoscope, as well as the endoscopy processing unit, are similar to what is currently available in clinical practice, with the added CAD EYE software. The controller has been configured to allow the operator to activate and deactivate the CAD function depending on the need for it. These functions can be turned on and off using a button on the controller by the Clinician. The CADe and CADx functions operate when white light and blue laser imaging (BLI) are used, respectively. This provides a unique opportunity to externally validate the use of the CADx support tool by evaluating its diagnostic accuracy with final polyp histology as the gold standard, while also comparing its performance in a clinical setting against a Clinician using IEE (which is the conventional method of predicting polyp histology in colonoscopy). The investigators plan to conduct a prospective, multi-centre clinical trial to validate the accuracy of CADx support for prediction of polyp histology in real-time colonoscopy. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05034185
Study type Observational
Source Changi General Hospital
Contact
Status Completed
Phase
Start date March 3, 2021
Completion date October 1, 2022

See also
  Status Clinical Trial Phase
Terminated NCT03746353 - Early Closure Versus Conventional Closure in Postoperative Patients With Low Anteriresection for Rectal Cancer N/A
Recruiting NCT05809999 - IBD Neoplasia Surveillance RCT N/A
Recruiting NCT06041945 - Artificial Intelligence to Implement Cost-saving Strategies for Colonoscopy Screening Based on in Vivo Prediction of Polyp Histology N/A
Not yet recruiting NCT02688699 - Additive Hemostatic Efficacy of EndoClot After EMR or ESD in the Gastrointestinal Tract Phase 4
Not yet recruiting NCT03175146 - A Study to See Whether Stereotactic Body RadioTherapy (SBRT) Can Shrink Tumours Within the Liver Safely N/A
Completed NCT02529007 - Endo-cuff Assisted Vs. Standard Colonoscopy for Polyp Detection in Bowel Cancer Screening N/A
Not yet recruiting NCT01929499 - Efficacy of Adjuvant Cytokine-induced Killer Cells in Colon Cancer Phase 2
Completed NCT01681472 - PK/PD Investigation of Modufolin (Arfolitixorin) in Plasma, Tumor and Adjacent Mucosa Adjacent Mucosa in Patients With Colon Cancer Phase 1/Phase 2
Completed NCT01438645 - ScopeGuide-assisted Colonoscopy Versus Conventional Colonoscopy N/A
Completed NCT00535652 - Concentration of Ertapenem in Colorectal Tissue Phase 4
Terminated NCT00267787 - Molecular Genetic and Pathological Studies of Anal Tumors
Completed NCT05498051 - Fluorescent Sentinel Lymph Node Identification in Colon Carcinoma Using Submucosal Bevacizumab-800CW. N/A
Recruiting NCT05068180 - Low-dose Neuroleptanalgesia for Postoperative Delirium in Elderly Patients Phase 4
Recruiting NCT03314896 - Laparoscopic Surgery for T4 Tumor of the Colon Cancer (LST4C Trial) N/A
Not yet recruiting NCT02777437 - Laparoscopic Surgery VS Laparoscopic Surgery + Neoadjuvant Chemotherapy for T4 Tumor of the Colon Cancer Phase 2/Phase 3
Not yet recruiting NCT02852915 - Laparoscopic Surgery for T4 Tumor of the Colon Cancer Phase 3
Completed NCT00997802 - Japanese National Computed Tomographic (CT) Colonography Trial N/A
Completed NCT01056913 - NITI CAR27 (ColonRing) Compression Anastomosis in Colorectal Surgery Phase 4
Completed NCT00537901 - First-Line Bevacizumab and Chemotherapy in Metastatic Cancer of the Colon or Rectum - International Study N/A
Completed NCT00470782 - Aerobic Capacity and Body Composition in Colon Cancer Patients N/A