Clinical Trials Logo

Chronic Myelomonocytic Leukemia clinical trials

View clinical trials related to Chronic Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT00589316 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

Start date: October 5, 2007
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of iodine I 131monoclonal antibody BC8 when given together with fludarabine phosphate, cyclophosphamide, total-body irradiation, and donor bone marrow transplant, and to see how well they work in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has spread to nearby or other places in the body (advanced), or high-risk myelodysplastic syndrome. Giving chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclophosphamide together with mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody together with donor stem cell transplant, fludarabine phosphate, cyclophosphamide, mycophenolate mofetil, and tacrolimus may be an effective treatment for advanced acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndromes.

NCT ID: NCT00509249 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Aflibercept in Treating Patients With Myelodysplastic Syndromes

Start date: September 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well aflibercept works in treating patients with myelodysplastic syndromes. Aflibercept may be able to carry cancer-killing substances directly to myelodysplastic syndrome cells. It may also stop the growth of cancer cells by blocking blood flow to the cancer

NCT ID: NCT00387426 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Sunitinib in Treating Patients With Idiopathic Myelofibrosis

Start date: September 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well sunitinib works in treating patients with idiopathic myelofibrosis. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells.

NCT ID: NCT00119366 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: May 2003
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of iodine I 131 monoclonal antibody BC8 when given together with fludarabine phosphate, total-body irradiation, and donor stem cell transplant followed by cyclosporine and mycophenolate mofetil in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has spread to other places in the body and usually cannot be cured or controlled with treatment. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving fludarabine phosphate and total-body irradiation before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody together with donor stem cell transplant, cyclosporine, and mycophenolate mofetil may be an effective treatment for advanced acute myeloid leukemia or myelodysplastic syndromes.

NCT ID: NCT00113321 Terminated - Clinical trials for Myelodysplastic Syndrome

Low-Dose Decitabine in Myelodysplastic Syndrome Post Azacytidine Failure

Start date: March 2005
Phase: Phase 2
Study type: Interventional

To study if decitabine can help to control Myelodysplastic Syndrome (MDS) in patients who have failed on therapy with azacytidine, the current standard of therapy.

NCT ID: NCT00074750 Terminated - Clinical trials for Acute Myelogenous Leukemia

Study of DT388GMCSF Fusion Protein in Acute Myelogenous Leukemia (AML) and Chronic Myelomonocytic Leukemia (CMML)

Start date: December 2003
Phase: Phase 1
Study type: Interventional

DTGM belongs to a new generation of drugs designed to target leukemic cells. To achieve this, DTGM takes advantage of the ability of naturally-produced growth factor (GM, granulocyte-macrophage stimulating factor) to deliver a drug (diphtheria toxin) to cells; preferably leukemic cells. It then attaches to the cells and allows the toxin to enter the leukemic cells and destroy them.