Clinical Trials Logo

Clinical Trial Summary

This study will evaluate the effectiveness of deep brain stimulation (DBS) for treating primary dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. Medical therapies are available, but not all patients get adequate relief from the abnormal movements or the pain associated with them. DBS is a surgical procedure that interrupts neuronal circuits in the globus pallidus interna (Gpi) and subthalamic nucleus (STN) - areas of the basal ganglia of the brain that do not work correctly in patients with dystonia. This results in decreased movement and therefore may lessen patients' symptoms and pain. The study will also examine the physiology of dystonia and determine whether the treatment effects of DBS in the Gpi differ significantly from DBS of the STN.

Patients 18 years of age and older with primary cervical dystonia that does not respond to medical treatment or botulinum toxin (Botox) may be eligible for this study. Candidates are screened with blood and urine tests, chest x-ray, electrocardiogram, and magnetic resonance imaging (MRI, see below) of the brain.

Each participant undergoes the following tests and procedures:

- Magnetic resonance imaging. This procedure is done after implantation of the stimulators to verify position of the electrodes. MRI uses a magnetic field and radio waves to produce images of the brain. The patient lies on a table that is moved into the scanner (a narrow cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure usually lasts about 45 to 90 minutes, during which the patient is asked to lie still for up to 15 minutes at a time.

- Transcranial magnetic stimulation. This procedure maps brain function. A wire coil is held on the scalp, and a brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the patient may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the patient may hear a click and feel a pulling sensation on the skin under the coil. During the stimulation, electrical activity of muscles is recorded with a computer, using electrodes attached to the skin with tape.

- Neurologic evaluation. Before and after DBS, the patient's dystonia is measured with a standardized rating scale called the Toronto Western Spasmodic Torticollis Scale (TWSTRS).

- DBS treatment. Patients are randomly assigned to have electrodes implanted in either the Gpi or STN area of the basal ganglia. The electrodes are what stimulate the brain in DBS therapy. Before surgery, a frame is secured to the patient's head, and an MRI scan is done. DBS involves making two small incisions and two small holes in the skull, opening the lining around the brain, locating the Gpi or STN, securing the electrodes in place, and connecting them to the pulse generator that is placed under the skin below the collar bone. In addition, during the surgery, the patient is asked to move certain muscles. The muscle activity is recorded to gain a better understanding of the physiology of movement. After surgery, MRI scans are done to confirm placement of the electrodes.

- Stimulation and evaluation. After surgery, patients' movements are evaluated during and after stimulation. The changes in movement and function are videotaped and scored according to a rating scale. The optimal stimulation settings are determined and the stimulators are adjusted accordingly.

Neurologic evaluations with the TWSTRS scale are repeated at 1, 2, 3, 6 and 12 months after surgery, and the stimulators are adjusted as needed. Some of the evaluations are videotaped.


Clinical Trial Description

Objective: For patients with cervical dystonia who have failed medical therapy, stereotactic deep brain stimulation (DBS) of the globus pallidus interna (Gpi) or subthalamic nucleus (STN) can provide significant symptom improvement, but it is not known which site provides maximum benefit or the physiologic mechanisms by which these improvements may occur. The study goals are to determine if DBS of Gpi or STN provides significant clinical improvement in patients with primary cervical dystonia, whether the anatomic DBS site (if either) provides optimal improvement, and to gain deeper insight into the underlying pathophysiology of this disorder.

Study population: Adult patients with medically refractory primary cervical dystonia will make-up the study population. Patients with primary cervical dystonia suffer a wide range of symptoms including physical deformity, speech difficulties, swallowing dysfunction, visual problems, and intractable pain, which can result in an inability to care for themselves.

Design: We propose placing DBS electrodes (using microelectrode guidance) bilaterally into either the Gpi or STN of medically refractory cervical dystonia patients. Physiological studies will be performed and compared with clinical changes to understand the mechanism of action of DBS and underlying pathophysiology of cervical dystonia.

Outcome measures: Clinical effectiveness of DBS of the Gpi or STN will be measured by the Toronto Western Spasmodic Torticollis Scale and monitored over time to determine the effectiveness of DBS and if there is an ideal anatomic stimulation site. Electrophysiologic outcome measures will be obtained to determine the underlying pathophysiology of cervical dystonia, and the mechanism of action of DBS. ;


Study Design

Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00132340
Study type Interventional
Source National Institutes of Health Clinical Center (CC)
Contact
Status Completed
Phase Phase 1
Start date August 2005
Completion date July 2006

See also
  Status Clinical Trial Phase
Completed NCT03617367 - Long-Term Safety and Efficacy of Repeat Treatments of DaxibotulinumtoxinA for Injection in Adults With Isolated Cervical Dystonia (ASPEN-OLS) Phase 3
Not yet recruiting NCT04057911 - A Trial of Non-invasive Stimulation in Cervical Dystonia N/A
Withdrawn NCT02180139 - tDCS in Cervical Dystonia N/A
Completed NCT00541905 - Daily Dystonia Practice - A Trial to Investigate NT 201, the Duration of Treatment Effect After One Injection Session and in Long-term Treatment in Cervical Dystonia Phase 4
Unknown status NCT00418925 - Efficacy of Dronabinol for the Treatment of Cervical Dystonia Phase 2
Not yet recruiting NCT05715138 - Comparison of Pallidal With Subthalamic Deep Brain Stimulation for Cervical Dystonia N/A
Completed NCT02131467 - Safety and Tolerability of Perampanel in Cervical Dystonia Phase 1/Phase 2
Completed NCT02959645 - Assessment of Brain Activities in Cervical Dystonia
Completed NCT03805152 - Abobotulinum Toxin and Neubotulinum Toxin Injection in Cerivical Dystonia Phase 3
Completed NCT04949594 - Relief of Pain in Patients With Cervical Dystonia Through the Use of Transcutaneous Electric Nerve Stimulation (TENS)
Recruiting NCT01664013 - The Impact of Botulinum Toxin Treatment in Quality of Life of Cervical Dystonia Patients Phase 4
Completed NCT00447772 - Study to Assess the Efficacy and Safety of Dysport® in Cervical Dystonia Phase 3
Completed NCT00210431 - Post Marketing Surveillance Study of Dysport
Completed NCT05157100 - Clinical Study of Ingrezza (Valbenazine) for the Treatment of Cervical Dystonia Phase 4
Completed NCT00257660 - Randomized, Placebo-Controlled Study of AbobotulinumtoxinA (Dysport®) for the Treatment of Cervical Dystonia Phase 3
Completed NCT05103202 - Efficacy and Safety of 10-Week or Shorter vs 12-Week or Longer Injection Intervals of Botulinum Toxin
Terminated NCT00760318 - Keppra for Cervical Dystonia Phase 2
Completed NCT00323765 - Plasticity in Cervical Dystonia N/A
Completed NCT04171258 - Clinical Trial to Compare the Safety and Efficacy of Botulax® Versus Botox® in Patients With Cervical Dystonia Phase 1
Completed NCT04849988 - A Phase 2 Study to Evaluate the Safety and Efficacy of ABP-450 in the Treatment of Cervical Dystonia Phase 2