Cerebral Palsy Clinical Trial
Official title:
Examining the Effect of Eye Gaze Technology on Children With Cortical Visual Impairment and Its Impact on Occupational Performance
NCT number | NCT06067607 |
Other study ID # | 2021-09 |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | February 1, 2023 |
Est. completion date | April 5, 2024 |
The goal of this study is to learn about eye gaze technology's use as an assessment and intervention of visual skills and the impact on occupational performance in children with cortical/cerebral visual impairment. The main questions the study aims to answer are: - Does the use of eye gaze technology with graded visual activities improve visual abilities: - Does an improvement in visual abilities improve occupational performance? - What are the factors that correlate with improved visual abilities? Participants will complete the Pre-test with Canadian Occupational Performance Measurement, Cortical Visual Impairment Range, Sensory Profile and Sensory Processing Checklist for Children with Visual Impairment. Then will participate in eye gaze technology activities using eye gaze software with graded visual games for 20 minutes per day for 4 weeks. Observations of positioning, head/eye position, sensory processing, and types of eye gaze activities used during the session. Pre test, daily and post test percentage scores on the eye gaze activities will be recorded. Then the child will complete post testing with the Canadian Occupational Performance Measurement and Cortical Visual Impairment Range.
Status | Recruiting |
Enrollment | 10 |
Est. completion date | April 5, 2024 |
Est. primary completion date | April 5, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 2 Years to 10 Years |
Eligibility | Inclusion Criteria: - Diagnosed with Cortical/Cerebral Visual Impairment by Physician - 2-10 years of age - Parent or Caregiver available for interview Exclusion Criteria: - Only ocular visual impairment, - Age above 10 years of age. - No parent or caregiver available for interview |
Country | Name | City | State |
---|---|---|---|
United States | The Children's Center for the Visually Impaired | Kansas City | Missouri |
Lead Sponsor | Collaborator |
---|---|
Rockhurst University |
United States,
Ben Itzhak N, Kooiker MJG, van der Steen J, Pel JJM, Wagemans J, Ortibus E. The relation between visual orienting functions, daily visual behaviour and visuoperceptual performance in children with (suspected) cerebral visual impairment. Res Dev Disabil. 2021 Dec;119:104092. doi: 10.1016/j.ridd.2021.104092. Epub 2021 Oct 5. — View Citation
Bennett, C. R., Bailin, E. S., Gottlieb, T. K., Bauer, C. M., Bex, P. J., & Merabet, L. B. (2018). Virtual reality based assessment of static object visual search in ocular compared to cerebral visual impairment. In International Conference on Universal Access in Human-Computer Interaction (pp. 28-38). Springer, Cham. https://doi.org/10.1007/978-3-319-92052-8_3
Cemali M, Pekcetin S, Aki E. The Effectiveness of Sensory Integration Interventions on Motor and Sensory Functions in Infants with Cortical Vision Impairment and Cerebral Palsy: A Single Blind Randomized Controlled Trial. Children (Basel). 2022 Jul 27;9(8):1123. doi: 10.3390/children9081123. — View Citation
Chang MY, Borchert MS. Advances in the evaluation and management of cortical/cerebral visual impairment in children. Surv Ophthalmol. 2020 Nov-Dec;65(6):708-724. doi: 10.1016/j.survophthal.2020.03.001. Epub 2020 Mar 19. — View Citation
Chang MY, Borchert MS. Methods of visual assessment in children with cortical visual impairment. Curr Opin Neurol. 2021 Feb 1;34(1):89-96. doi: 10.1097/WCO.0000000000000877. — View Citation
Fazzi E, Micheletti S, Calza S, Merabet L, Rossi A, Galli J; Early Visual Intervention Study Group. Early visual training and environmental adaptation for infants with visual impairment. Dev Med Child Neurol. 2021 Oct;63(10):1180-1193. doi: 10.1111/dmcn.14865. Epub 2021 May 4. — View Citation
Ferziger, N. (2017). Assessment of gaze responses of children with Cerebral Palsy and cerebral visual impairment: Implementation of a computerized video coding system. The American Journal of Occupational Therapy, 71(4_Supplement_1). https://doi.org/10.5014/ajot.2017.71s1-po1138
Galli J, Loi E, Molinaro A, Calza S, Franzoni A, Micheletti S, Rossi A, Semeraro F, Fazzi E; CP Collaborative Group. Age-Related Effects on the Spectrum of Cerebral Visual Impairment in Children With Cerebral Palsy. Front Hum Neurosci. 2022 Mar 2;16:750464. doi: 10.3389/fnhum.2022.750464. eCollection 2022. — View Citation
Gartz, R., Dickerson, A., & Radloff, J. (2019). Effectiveness of visual scanning compensatory training after stroke. The American Journal of Occupational Therapy, 73(4_Supplement_1). https://doi.org/10.5014/ajot.2019.73s1-po2039
Kovarski K, Caetta F, Mermillod M, Peyrin C, Perez C, Granjon L, Delorme R, Cartigny A, Zalla T, Chokron S. Emotional face recognition in autism and in cerebral visual impairments: In search for specificity. J Neuropsychol. 2021 Jun;15(2):235-252. doi: 10.1111/jnp.12221. Epub 2020 Sep 13. — View Citation
Kran BS, Lawrence L, Mayer DL, Heidary G. Cerebral/Cortical Visual Impairment: A Need to Reassess Current Definitions of Visual Impairment and Blindness. Semin Pediatr Neurol. 2019 Oct;31:25-29. doi: 10.1016/j.spen.2019.05.005. Epub 2019 May 11. — View Citation
Lammers NA, Van den Berg NS, Lugtmeijer S, Smits AR, Pinto Y, de Haan EHF; visual brain group. Mid-range visual deficits after stroke: Prevalence and co-occurrence. PLoS One. 2022 Apr 1;17(4):e0262886. doi: 10.1371/journal.pone.0262886. eCollection 2022. — View Citation
Manley CE, Bennett CR, Merabet LB. Assessing Higher-Order Visual Processing in Cerebral Visual Impairment Using Naturalistic Virtual-Reality-Based Visual Search Tasks. Children (Basel). 2022 Jul 26;9(8):1114. doi: 10.3390/children9081114. — View Citation
Racey C, Franklin A, Bird CM. The processing of color preference in the brain. Neuroimage. 2019 May 1;191:529-536. doi: 10.1016/j.neuroimage.2019.02.041. Epub 2019 Feb 21. — View Citation
Rowe FJ, Hanna K, Evans JR, Noonan CP, Garcia-Finana M, Dodridge CS, Howard C, Jarvis KA, MacDiarmid SL, Maan T, North L, Rodgers H. Interventions for eye movement disorders due to acquired brain injury. Cochrane Database Syst Rev. 2018 Mar 5;3(3):CD011290. doi: 10.1002/14651858.CD011290.pub2. — View Citation
Vancleef K, Janssens E, Petre Y, Wagemans J, Ortibus E. Assessment tool for visual perception deficits in cerebral visual impairment: development and normative data of typically developing children. Dev Med Child Neurol. 2020 Jan;62(1):111-117. doi: 10.1111/dmcn.14303. Epub 2019 Jul 2. — View Citation
VerMaas-Hannan, J., Gehringer, J., Wilson, T., & Kurz, M. (2019). Visual motion perception is aberrant in children with cerebral palsy. The American Journal of Occupational Therapy, 73(4_Supplement_1). https://doi.org/10.5014/ajot.2019.73s1-rp302b
* Note: There are 17 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Sensory Processing Checklist for Children with Visual Impairment (SPCCVI) | Caregiver checklist of observed behaviors of sensory processing.SPCCVI scores on 0-5 scale with 0 indicating sensory behavior not seen and 5 indicating behavior "always observed". Higher scores relate to increased sensory processing behaviors. | Test given at baseline. | |
Other | Sensory Profile-Short Form (SPSF) | Caregiver Test of sensory processing. The rating scale on the Sensory Profile ranges from 1 (Almost Never) to 5 (Almost Always), with higher scores indicating a higher frequency of specific sensory responses. | Test given at baseline. | |
Primary | Canadian Occupational Performance Measurement (COPM) | semi structured interview of daily function and occupational performance using score for importance, performance and satisfaction of occupational performance skills. Minimum score of 0-10, 10 being maximum score. Increased score shows higher performance, and satisfaction. | Measure change from baseline and after 4 weeks of intervention. | |
Primary | Eye Gaze Technology Software Scoring: Insight Software | Computerized score of visual abilities conducted by software and eye gaze camera. Scale of 0-100%. Increased percentage score shows improvement in eye gaze skill. | Measure change from baseline and after 4 weeks of intervention. | |
Primary | Cortical Visual Impairment Range (CVI) | Test of functional vision and visual processing. Scale of 0-10 on CVI Range scores range from 0 to 10, with 10 indicating the best functional vision. The scores are further divided into three phases (phase I: 0-3, phase II: 4-7 and phase III: 8-10. Severity of each visual behavior is rated on 0-1 scale. 1 means that behavior has resolved and is no longer observed. | Measure change from baseline and after 4 weeks of intervention. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |