Cerebral Palsy Clinical Trial
Official title:
The Effect of Robotic Hand Therapy on Hand Functions and Quality of Life in Children With Cerebral Palsy: A Randomized Controlled Study
Cerebral palsy (CP) is the most common physical disability in childhood. The term CP is defined as a group of persistent but non-progressive movement and posture disorders resulting from a defect or lesion of the immature brain. The overall prevalence of CP worldwide is 2.11 per 1000 live births. There is evidence that 80% of children with CP have upper extremity involvement. In general, the acquisition of effective arm and hand skills for use in daily life is a complex process that not only requires neuromusculoskeletal integrity, but also includes various aspects of the child's abilities. Thus, in addition to the positive symptoms that typically present patterns of spasticity, children and adolescents with CP often have a poor ability to reach, grasp, release, and manipulate objects. They also have difficulty using their upper extremities to perform self-care and other activities. Robot-assisted and computer-assisted methods may be valuable new strategies for improving the sensory-motor learning process in children with central motor impairment. These new technologies represent an attractive complement to existing physiotherapeutic and occupational therapy concepts. In patients with difficulty in individual finger and hand movements, the AMADEO device (Tyromotion, Austria) can be used for unilateral distal training of the upper extremity. With this device, patients with little or no voluntary control of the hand and fingers can receive more or less passive training, while those with better distal function of the upper extremity can strength train by following the device or even against the device to a certain extent. Implementation of robot-assisted therapy provides intense repetitive training, sensorimotor integration and cognitive engagement through targeted tasks; focuses primarily on functional motor performance. From previous studies, the use of robotic devices has been found to improve the kinematics, range of motion, muscle tone, postural control, and functionality of the upper and lower extremities in individuals with CP. Robotic hand therapy has started to take place in routine rehabilitation protocols today. Considering the scarcity of studies on robotic hand therapy in the pediatric group, larger-scale studies are needed. In this study, our aim is to investigate the effect of robotic hand therapy on hand functions and quality of life in children with CP.
Cerebral palsy (CP) is the most common physical disability in childhood. The term CP is defined as a group of persistent but non-progressive movement and posture disorders resulting from a defect or lesion of the immature brain. The overall prevalence of CP worldwide is 2.11 per 1000 live births. There is evidence that 80% of children with CP have upper extremity involvement. In general, the acquisition of effective arm and hand skills for use in daily life is a complex process that not only requires neuromusculoskeletal integrity, but also includes various aspects of the child's abilities. Thus, in addition to the positive symptoms that typically present patterns of spasticity, children and adolescents with CP often have a poor ability to reach, grasp, release, and manipulate objects. They also have difficulty using their upper extremities to perform self-care and other activities. Robot-assisted and computer-assisted methods may be valuable new strategies for improving the sensory-motor learning process in children with central motor impairment. These new technologies represent an attractive complement to existing physiotherapeutic and occupational therapy concepts. In patients with difficulty in individual finger and hand movements, the AMADEO device (Tyromotion, Austria) can be used for unilateral distal training of the upper extremity. With this device, patients with little or no voluntary control of the hand and fingers can receive more or less passive training, while those with better distal function of the upper extremity can strength train by following the device or even against the device to a certain extent. Implementation of robot-assisted therapy provides intense repetitive training, sensorimotor integration and cognitive engagement through targeted tasks; focuses primarily on functional motor performance. From previous studies, the use of robotic devices has been found to improve the kinematics, range of motion, muscle tone, postural control, and functionality of the upper and lower extremities in individuals with CP. In a case series of 7 children with CP presenting the results of robotic therapy, it showed beneficial effects on body structure and function, including motor function, coordination, and brachioradial muscle recruitment, but no improvement in activity and participation skills. It has been stated that there is a need for new studies to be carried out with longer training periods and with the measurement of grip strength, daily living activity evaluation scales covering a wide variety of tasks. In the first randomized controlled study with 16 children with CP, the results of upper extremity robot-assisted therapy were evaluated with body functions, structure and activity participation scales, and it was found that robotic therapy improved upper extremity kinematics and manual dexterity, but not functional activities and social participation. Most robotic studies in children and adolescents with CP have relatively small sample sizes and few randomized controlled trials. Robotic hand therapy has started to take place in routine rehabilitation protocols today. Considering the scarcity of studies on robotic hand therapy in the pediatric group, larger-scale studies are needed. In this study, our aim is to investigate the effect of robotic hand therapy on hand functions and quality of life in children with CP. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |