Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05497609
Other study ID # BTX muskel CP
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date January 15, 2006
Est. completion date December 15, 2027

Study information

Verified date July 2022
Source Region Stockholm
Contact Eva M Pontén, MD PhD
Phone +46706303052
Email eva.ponten@ki.se
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Since about 25 years a combination treatment with intramuscular botulinum toxin injections, braces and training has had a tremendous and increasing popularity, although lasting long-term clinical advantage is not yet proven. Muscle morphology of the biceps brachii and the gastrocnemius muscles: - The hypothesis is that care as usual, i.e. training and splinting sessions with botulinum toxin as adjuvant treatment, will reduce (normalize) the expression of the fast fatigable myosin heavy chain MyHC IIx and increase the expression of developmental myosin, as a possible sign of growth. As the biceps in the arm is used irregularly and voluntarily, and the gastrocnemius is activated during automated gait, the adaptations of those muscles will be different. Methods: Baseline muscle biopsies: Percutaneous biopsies are taken just before the first intramuscular botulinum toxin injection is given. The doses and the intervals for the botulinum toxin treatment will follow clinical routines. Biopsies 4-6 months, 12 months and 24 months after the first botulinum toxin injection: The exact same procedure as above will be performed, but the biopsies will be taken 2 cm distant, medial or lateral, from previous biopsy sites - Significance:. More knowledge is warranted regarding the actual molecular process in the muscle leading to a contracture, and its relation to the constant communication with the injured central nervous system. This study will give answers that could result in new, early prophylactic treatment of joint movement restrictions and motor impairment in children with CP.


Description:

Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Currently, the initial treatment of choice is the use of braces, which diminishes the shortening somewhat. Since about 25 years a combination treatment with intramuscular botulinum toxin injections, braces and training has had a tremendous and increasing popularity, although lasting long-term clinical advantage is not yet proven. Muscle morphology of the biceps brachii and the gastrocnemius muscles: • The hypothesis is that care as usual, i.e. training and splinting sessions with botulinum toxin as adjuvant treatment, will reduce (normalize) the expression of the fast fatigable myosin heavy chain MyHC IIx and increase the expression of developmental myosin, as a possible sign of growth. As the biceps in the arm is used irregularly and voluntarily, and the gastrocnemius is activated during automated gait, the adaptations of those muscles will be different. Methods: Baseline muscle biopsies: Percutaneous biopsies from the biceps brachii and the gastrocnemius muscles are taken just before the first intramuscular botulinum toxin injection is given. The doses and the intervals for the botulinum toxin treatment will follow clinical routines. Training of the leg and arm will after the injections be performed with the help of physiotherapists and occupational therapists. Biopsies 4-6 months, 12 months and 24 months after the first botulinum toxin injection: The exact same procedure as above will be performed, but the biopsies will be taken 2 cm distant, medial or lateral, from previous biopsy sites. The muscle specimens are snap frozen and stored at -80°C until analyzed. The expression of different myosin heavy chain (MyHC) isoforms is assessed by using the monoclonal antibodies (mAb) N2.261, mAb A4.840 against slow MyHC I, mAb F1.652 against embryonic MyHC, and mAb NCL-MHCn against fetal (=neonatal) MyHC)(Tiger, Champliaud et al. 1997; Wewer, Thornell et al. 1997). Satellite cells will be identified with mAb against N-CAM (neural cell adhesion molecule). The fibers are typed according to the content of MyHCs. Significance: Children with cerebral palsy have a motor impairment and progressive contractures that we often treat late; when tendon and bony surgery are the only options to realign the joints. Our aim is to treat the muscles early, so that the contractures and the bony malformations won't occur in the first place. Training and splints, with botulinum toxin as adjuvant treatment, is a very popular regime with this aim, but the long-term effect on muscle tissue and function is not yet known. This study will elucidate the effect during a 2-year period, and no such studies have yet been published. More knowledge is warranted regarding the actual molecular process in the muscle leading to a contracture, and its relation to the constant communication with the injured central nervous system. This study will give answers that could result in new, early prophylactic treatment of joint movement restrictions and motor impairment in children with CP.


Recruitment information / eligibility

Status Recruiting
Enrollment 50
Est. completion date December 15, 2027
Est. primary completion date December 15, 2026
Accepts healthy volunteers No
Gender All
Age group 2 Years to 18 Years
Eligibility Inclusion Criteria: - Cerebral Palsy, Aquired Brain Injury Exclusion Criteria: - Progressive neural disease

Study Design


Intervention

Other:
no intervention. Care as ususal
No intervention

Locations

Country Name City State
Sweden Karolinska University Hospital Stockholm

Sponsors (1)

Lead Sponsor Collaborator
Eva Ponten

Country where clinical trial is conducted

Sweden, 

Outcome

Type Measure Description Time frame Safety issue
Primary Muscle fiber area um2, square micrometers, measured on specimens Biopsies are collected and stored in -80° freezer and then analyzed. Analyses will take place up to 20271215
Primary Muscle fiber types based on myosin heavy chain isoforms Percentage of all fibers Biopsies are collected and stored in -80° freezer and then analyzed. Analyses will take place up to 20271215
Primary Extracellular matrix, area um2, square micrometers, measured on specimens Biopsies are collected and stored in -80° freezer and then analyzed. Analyses will take place up to 20271215
Primary Capillaries per fiber area number of capillaries/um2 Biopsies are collected and stored in -80° freezer and then analyzed. Analyses will take place up to 20271215
Primary Mitochondria: NADH staining, morphology Scoring 1, 2, 3 Biopsies are collected and stored in -80° freezer and then analyzed. Analyses will take place up to 20271215
Secondary Clinical assessment, contracture °, degrees At 0 months, 6 months, 12 months and 24 months
See also
  Status Clinical Trial Phase
Recruiting NCT05317234 - Genetic Predisposition in Cerebral Palsy N/A
Recruiting NCT05576948 - Natural History of Cerebral Palsy Prospective Study
Completed NCT04119063 - Evaluating Wearable Robotic Assistance on Gait Early Phase 1
Completed NCT03264339 - The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy N/A
Completed NCT05551364 - Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy N/A
Completed NCT03902886 - Independent Walking Onset of Children With Cerebral Palsy
Recruiting NCT05571033 - Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy N/A
Not yet recruiting NCT04081675 - Compliance in Children With Cerebral Palsy Supplied With AFOs
Completed NCT02167022 - Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy N/A
Completed NCT04012125 - The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy N/A
Enrolling by invitation NCT05619211 - Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities Phase 1
Completed NCT04489498 - Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
Completed NCT03677193 - Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy N/A
Recruiting NCT06450158 - Robot-assisted Training in Children With CP N/A
Completed NCT04093180 - Intensive Neurorehabilitation for Cerebral Palsy N/A
Completed NCT02909127 - The Pediatric Eating Assessment Tool
Not yet recruiting NCT06377982 - Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy Phase 1
Not yet recruiting NCT06007885 - Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention. N/A
Not yet recruiting NCT03183427 - Corpus Callosum Size in Patients With Pineal Cyst N/A
Active, not recruiting NCT03078621 - Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy Phase 1/Phase 2