Cerebral Palsy Clinical Trial
— I-C-FUNOfficial title:
Effects of Remote Limb Ischemic Conditioning to Enhance Muscle Power, Dynamic Balance, and Walking Performance in Children With Cerebral Palsy
Verified date | March 2023 |
Source | East Carolina University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The purpose of this research study is to determine if remote limb ischemic conditioning (RLIC) can increase skeletal muscle power, enhance learning of motor (dynamic balance) task, and improve walking performance in children with cerebral palsy (CP).
Status | Completed |
Enrollment | 24 |
Est. completion date | December 30, 2022 |
Est. primary completion date | December 30, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 6 Years to 16 Years |
Eligibility | Inclusion Criteria: 1. Children diagnosed with unilateral or diplegia cerebral palsy (CP) 2. Gross Motor Function Classification System (GMFCS) levels I-III Exclusion Criteria: 1. Children with other developmental disabilities such as autism, developmental coordination disorders, etc. 2. Children with cognitive deficits or communication problem 3. Children with balance disorders such as vestibular disorders, posterior fossa tumors etc. 4. Children with known cardiorespiratory dysfunctions 5. Children who are receiving other adjunct therapies such as TMS, tDCS, vagal nerve stimulation 6. Presence of lower extremity condition, injury, or surgery which could compromise conditioning and training 7. Children with sickle cell disease |
Country | Name | City | State |
---|---|---|---|
United States | East Carolina University | Greenville | North Carolina |
Lead Sponsor | Collaborator |
---|---|
East Carolina University |
United States,
Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, Boyle JR, Varty K, Kharbanda RK, Dutka DP, Gaunt ME. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007 Sep 11;116(11 Suppl):I98-105. doi: 10.1161/circulationaha.106.679167. — View Citation
Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DH. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012 Nov;44(11):2084-9. doi: 10.1249/MSS.0b013e318262cb17. — View Citation
Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HT, Redington AN, Nielsen TT. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010 Feb 27;375(9716):727-34. doi: 10.1016/S0140-6736(09)62001-8. — View Citation
Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol. 2015 Jun 1;113(10):3708-19. doi: 10.1152/jn.01028.2014. Epub 2015 Apr 1. — View Citation
Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve. 2010 May;41(5):651-60. doi: 10.1002/mus.21539. — View Citation
Damiano DL, Laws E, Carmines DV, Abel MF. Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy. Gait Posture. 2006 Jan;23(1):1-8. doi: 10.1016/j.gaitpost.2004.10.007. Epub 2005 Jan 7. — View Citation
de Groot PC, Thijssen DH, Sanchez M, Ellenkamp R, Hopman MT. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010 Jan;108(1):141-6. doi: 10.1007/s00421-009-1195-2. Epub 2009 Sep 18. — View Citation
Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006 Jun;7(6):437-48. doi: 10.1038/nrn1927. — View Citation
Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007 Aug 18;370(9587):575-9. doi: 10.1016/S0140-6736(07)61296-3. — View Citation
Hyngstrom AS, Murphy SA, Nguyen J, Schmit BD, Negro F, Gutterman DD, Durand MJ. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. J Appl Physiol (1985). 2018 May 1;124(5):1140-1147. doi: 10.1152/japplphysiol.01072.2017. Epub 2018 Feb 8. — View Citation
Jean-St-Michel E, Manlhiot C, Li J, Tropak M, Michelsen MM, Schmidt MR, McCrindle BW, Wells GD, Redington AN. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011 Jul;43(7):1280-6. doi: 10.1249/MSS.0b013e318206845d. — View Citation
Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009 Oct 31;374(9700):1557-65. doi: 10.1016/S0140-6736(09)61421-5. — View Citation
Kjeld T, Rasmussen MR, Jattu T, Nielsen HB, Secher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014 Jan;46(1):151-5. doi: 10.1249/MSS.0b013e3182a4090a. — View Citation
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, Ji XM, Hu XM. Remote Ischemic Preconditioning-Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neurosci Ther. 2016 Jan;22(1):43-52. doi: 10.1111/cns.12448. Epub 2015 Sep 19. — View Citation
Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, Li G, Ren C, Luo Y, Ling F, Jia J, Hua Y, Wang X, Ding Y, Lo EH, Ji X. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012 Oct 30;79(18):1853-61. doi: 10.1212/WNL.0b013e318271f76a. Epub 2012 Oct 3. — View Citation
Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013 May;27(4):325-34. doi: 10.1177/1545968312469834. Epub 2013 Jan 4. — View Citation
Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE. Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg. 2010 Jan-Feb;25(1):127-34. doi: 10.1111/j.1540-8191.2009.00820.x. Epub 2009 Jun 22. — View Citation
Steele KM, Damiano DL, Eek MN, Unger M, Delp SL. Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait. J Pediatr Rehabil Med. 2012;5(2):99-106. doi: 10.3233/PRM-2012-0201. — View Citation
Steele KM, van der Krogt MM, Schwartz MH, Delp SL. How much muscle strength is required to walk in a crouch gait? J Biomech. 2012 Oct 11;45(15):2564-9. doi: 10.1016/j.jbiomech.2012.07.028. Epub 2012 Sep 5. — View Citation
Surkar SM, Bland MD, Mattlage AE, Chen L, Gidday JM, Lee JM, Hershey T, Lang CE. Effects of remote limb ischemic conditioning on muscle strength in healthy young adults: A randomized controlled trial. PLoS One. 2020 Feb 4;15(2):e0227263. doi: 10.1371/journal.pone.0227263. eCollection 2020. — View Citation
Sutter EN, Mattlage AE, Bland MD, Cherry-Allen KM, Harrison E, Surkar SM, Gidday JM, Chen L, Hershey T, Lee JM, Lang CE. Remote Limb Ischemic Conditioning and Motor Learning: Evaluation of Factors Influencing Response in Older Adults. Transl Stroke Res. 2019 Aug;10(4):362-371. doi: 10.1007/s12975-018-0653-8. Epub 2018 Aug 7. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in Peak knee extension power | Power is defined as the ability to exert a maximum force in short amount of time (speed) while performing knee extension. Bilateral quadriceps power will be measured using Humac Norm Isokinetic testing device (Computer Sports Medicine Inc, Stoughton, MA). | Pre-intervention to 1 month post-intervention follow-up | |
Primary | Change in Balance Score | The average amount of time in seconds that a participant maintains the stability platform within ±5° of horizontal position during 15 trials of 30 seconds each. The total score will range between 0-30 seconds. Higher balance score indicates better balance performance. | Pre-intervention to 1 month post-intervention follow-up | |
Primary | Change in Walking Speed | Self-selected and fast walking speeds will be measured using 10-meter walk test. | Pre-intervention to 1 month post-intervention follow-up | |
Secondary | Quadriceps Electromyography | While performing the isokinetic power testing, the electromyography (EMG) data will be recorded simultaneously. The EMG data will be used to quantify the electrical amplitude of quadriceps muscle. | Pre-intervention to 1 month post-intervention follow-up | |
Secondary | Gait Analysis | Lower extremity walking kinematics and kinetics will be measured using 10-camera motion analysis system (Qualisys Inc., Gothenburg, Sweden). Specific kinematic variables are hip, knee, and ankle joint torques. Kinetic variables are peak hip, knee, and ankle sagittal plane joint moments. | Pre-intervention to 1 month post-intervention follow-up | |
Secondary | Lower limb activity | Lower extremity activity will be measured using accelerometers (Actigraphs) worn on bilateral ankles for 24 hours. Specific accelerometry variable will be number of steps. | Pre-intervention to 1 month post-intervention follow-up |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |