Cerebral Palsy Clinical Trial
Official title:
Effectiveness of Family Collaborative Physiotherapy Programs With High-risk Infants
High risk infant is defined as infant with a negative history of environmental and biological factors, which can lead to neuromotor development problems. It is a heterogeneous group of premature infants born under thirty-seven weeks of age, with infants with low birth weight, term or developmental retardation for various reasons. Therefore, preterm infants with low birth weight can survive with a neurological sequelae such as cerebral palsy (CP), epilepsy, hearing and vision loss, mental retardation, speech and speech problems, and learning difficulties. The clinical diagnosis of CP, which can be observed in high-risk infants, is based on the combination of some neurological and clinical signs. High-risk of infant follow-up programs provide guidance for the treatment of neurodevelopmental delays and deterioration in terms of early development. Three methods with the best predictable validity that can determine CP before the adjusted age of 5-month is Magnetic Resonance Imaging (MRI), Prechtl's Assessment of General Movements (GMs), Hammersmith Infant Neurological Evaluation. In recent years, the diagnosis of high-risk of CP can be detected at 3 months with predictive validity and reliability by evaluating the quality of GMs. GMs are now considered the gold standard for early detection of CP because of its high sensitivity and specificity than MRI, cranial US and neurological evaluations. It was also found that cognitive or language skills may be inadequate in school age in patients with inadequate movement character and in the same postural patterns according to age, although GMs are normal. So new clinical care guidelines and new intervention research for infants with CP under the age of 2, needed to have been shown. High-risk infants who are thought to have developmental disorders need early intervention, but it is not yet known which interventions are more effective. In the literature, although interventions are generally shown to have a greater impact on cognitive development, their contribution to motor development cannot be fully demonstrated. The effectiveness of physiotherapy programs in the diagnosis and treatment of CP has not been clarified in the past years as a silent period. Therefore, studies involving early physiotherapy programs are needed in infants at high risk for CP.
High-risk infants who are thought to have developmental disorders need early intervention, but it is not yet unknown which interventions are more effective. In the literature, although interventions are generally shown to have a greater impact on cognitive development, their contribution to motor development cannot be fully demonstrated. Early physiotherapy and rehabilitation in CP includes approaches starting from the neonatal period up to 24 months. The main aim is to gain normal functional movements and to provide normal sensory input by using the rapid learning ability resulting from brain plasticity. Thus, it is aimed to reach the most independent level in terms of physical, cognitive, psychological and social aspects within the physiological and anatomical deficiencies and environmental limitations of the child. In the literature, there are studies including interventions to preterm infants with high risk for developmental disorder. However, although the number of samples in the studies is high, there is insufficient information about the rate of CP development. The effectiveness of physiotherapy programs in the diagnosis and treatment of CP has not been clarified in the past years as a silent period. Therefore, studies involving early physiotherapy programs are needed in infants at high risk for CP. Preterm infants have been shown to have difficulty in most functional areas due to lower academic success, welfare and productivity. These difficulties may arise in childhood and adolescence due to brain damage and structural changes. The stress of being away from mother contact has been proven in human and experimental animal studies. Physical and emotional environment modifications of the babies in the incubator environment can also reduce stress. Parent-centered trainings that will increase sensitivity in the intensive care unit by reducing stresses in the brain in terms of early intervention; it has been shown to have positive reflections on motor and cognitive development in the short term. In the literature, it has been shown that the specific motor education programs and the interventions that parents learn how to support the development of their babies are the most important ways to increase the cognitive development of infants at high risk by reducing motor disorders. It is essential to force babies to produce motor behavior on their own, knowing the limits of motor behavior. It is then essential to ensure that babies continue this activity and to use stimulations for this. There may be positive developmental outcomes in physiotherapy models such as COPCA, where parental coaching is performed. However, further studies are needed in this area. These physiotherapy approaches are necessary to reduce the risk for motor and cognitive development and to achieve normal motor development. In particular, the motor and cognitive development of infants at high risk of CP should be monitored. In the literature, an early rehabilitation model that includes physiotherapy in family routines has shown that some problems with high risk of infants need to be focused on by early physiotherapy approach. In our study, the effectiveness of family education and family cooperative physiotherapy programs in accordance with NDT-based neurodevelopmental treatment principles applied to infants with high risk of CP will be examined. The effect of physiotherapy methods applied to infants on motor and cognitive development levels will be investigated according to the risk factors and physiotherapy model. In addition, the effects of physiotherapy programs on the possibility of decreasing the symptoms of CP or preventing the development of CP will be examined. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |