Cerebral Glioblastoma Clinical Trial
Official title:
The Added Value of Automatic Segmentation of Cerebral Gliomas in Multi-Sequence Magnetic Resonance Imaging (MRI)
The aim of this study is to evaluate the role of automatic segmentation of cerebral gliomas in multi-sequence MR images using state-of-the-art methods for automatic segmentation and internal classification of brain tumors in correlation with operative findings
Status | Not yet recruiting |
Enrollment | 50 |
Est. completion date | April 2023 |
Est. primary completion date | February 2023 |
Accepts healthy volunteers | |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: - Patients with cerebral gliomas identified by MRI who will be treated surgically Exclusion Criteria: - Previously operated or biopsied gliomas. |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
Assiut University |
Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013 Oct;31(8):1426-38. doi: 10.1016/j.mri.2013.05.002. Epub 2013 Jun 20. Review. — View Citation
Kanaly CW, Mehta AI, Ding D, Hoang JK, Kranz PG, Herndon JE 2nd, Coan A, Crocker I, Waller AF, Friedman AH, Reardon DA, Sampson JH. A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhancing glioblastoma. J Neurosurg. 2014 Sep;121(3):536-42. doi: 10.3171/2014.4.JNS121952. Epub 2014 Jul 18. — View Citation
Meier R, Knecht U, Loosli T, Bauer S, Slotboom J, Wiest R, Reyes M. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry. Sci Rep. 2016 Mar 22;6:23376. doi: 10.1038/srep23376. — View Citation
Naceur MB, Saouli R, Akil M, Kachouri R. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Comput Methods Programs Biomed. 2018 Nov;166:39-49. doi: 10.1016/j.cmpb.2018.09.007. Epub 2018 Sep 21. — View Citation
Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C. ESTRO-ACROP guideline "target delineation of glioblastomas". Radiother Oncol. 2016 Jan;118(1):35-42. doi: 10.1016/j.radonc.2015.12.003. Epub 2016 Jan 6. — View Citation
Porz N, Habegger S, Meier R, Verma R, Jilch A, Fichtner J, Knecht U, Radina C, Schucht P, Beck J, Raabe A, Slotboom J, Reyes M, Wiest R. Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded. PLoS One. 2016 Nov 2;11(11):e0165302. doi: 10.1371/journal.pone.0165302. eCollection 2016. — View Citation
Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg. 2017 Feb;12(2):183-203. doi: 10.1007/s11548-016-1483-3. Epub 2016 Sep 20. — View Citation
Tabatabai G, Stupp R, van den Bent MJ, Hegi ME, Tonn JC, Wick W, Weller M. Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 2010 Nov;120(5):585-92. doi: 10.1007/s00401-010-0750-6. Epub 2010 Sep 23. Review. — View Citation
Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010 Apr 10;28(11):1963-72. doi: 10.1200/JCO.2009.26.3541. Epub 2010 Mar 15. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | evaluate the role of automatic segmentation of cerebral gliomas in multi-sequence MR images in correlation with operative findings. | The aim of this study is to evaluate the role of automatic segmentation of cerebral gliomas in multi-sequence MR images using state-of-the-art methods for automatic segmentation and internal classification of brain tumors in correlation with operative findings. | baseline |