Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03879018
Other study ID # IRB00182673
Secondary ID 2R01HD040289-15A
Status Recruiting
Phase N/A
First received
Last updated
Start date August 1, 2019
Est. completion date May 1, 2026

Study information

Verified date May 2024
Source Hugo W. Moser Research Institute at Kennedy Krieger, Inc.
Contact Anthony J Gonzalez, BS
Phone 4439232716
Email agonza30@jhmi.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to test for benefits of reinforcement based training paradigm versus standard practice over weeks for improving reaching movements in people with ataxia.


Description:

Damage to the cerebellum produces characteristic deficits in movement coordination, known as "ataxia." Reaching movements become curved, tremulous, and over- or undershoot targets, thus affecting nearly all activities of daily living. Sitting and standing balance becomes unsteady, and walking has a characteristic 'drunken' appearance with lateral veering and a widening of the base of support. People with many types of neurological diseases (e.g. autosomal dominant ataxias (e.g. SCAs), multiple sclerosis, cerebral palsy, stroke, Freidreich's ataxia) often have disabling ataxia. In past work the investigators have shown that many individuals with ataxia from cerebellar disease can learn simple visuomotor tasks using reinforcement learning paradigms. The investigators do not know if individuals with ataxia from cerebellar disease can improve more complex motor patterns. In general, there are few rehabilitation studies on ataxia, with most focusing on balance and walking. Yet, arm ataxia is a significant problem that affects most all activities of daily living (e.g. eating, cooking, bathing, dressing, working). Many studies have assessed reaching ataxia on single days in order to try to better understand the fundamental basis for ataxic arm movements. Based on previous literary searches, there are only a couple of small studies that have tested whether training over weeks can mitigate arm ataxia. Each of these was a case series of either 3 or 4 people, and all patients had ataxia from lesions that included structures outside of the cerebellum. Both showed some positive effects but responses varied across patients. This work that the investigators propose will look at the affects of a longer training regimen of upper limb reaching in people with cerebellar ataxia. The investigators will study cerebellar patients that have shown the ability to learn from previous work. Subjects with cerebellar ataxia will be randomized into two groups to receive either reinforcement training or standard practice training over a 12 week period. Subjects will train for 45 minutes a day, 3 times per week for two weeks for each type of training, with a two week 'rest' period in between. After training, subjects will be asked to return for two visits to test for retention. On each training day, reinforcement training (or standard practice) will be done using an Oculus Rift and Touch 3D headset. Training encompasses reaching to a 3D target with either online visual feedback or binary feedback 400 times. Motion tracking sensors will be placed on the shoulder, elbow, wrist, and finger, in order to track movement data in real time. These studies will provide important new information about upper limb long term training with visual feedback in individuals with Cerebellar Ataxia


Recruitment information / eligibility

Status Recruiting
Enrollment 18
Est. completion date May 1, 2026
Est. primary completion date April 1, 2026
Accepts healthy volunteers No
Gender All
Age group 22 Years to 80 Years
Eligibility Inclusion Criteria: - Cerebellar damage from stroke, tumor or degeneration - Age 22-80 Exclusion Criteria: - Clinical or MRI evidence of damage to extracerebellar brain (e.g. multiple system atrophy) - Extrapyramidal symptoms, peripheral vestibular loss, or sensory neuropathy - Dementia ( Mini-Mental State exam > 22) - Pain that interferes with the tasks - Vision loss that interferes with the tasks

Study Design


Related Conditions & MeSH terms


Intervention

Behavioral:
Reach training with visual feedback
Reach training will be accomplished using an Oculus Rift and Touch 3D headset. Active markers will be placed on the shoulder, elbow, wrist, and finger in order to capture limb movement in real time. During each training session, participants will first be familiarized with the task and then will reach from a home position to 4 virtual targets that are presented in the front of the participant and within the workspace where most natural arm movements are performed.Targets will be presented in a pseudorandom order and participants will reach a total of 400 times

Locations

Country Name City State
United States Motion Analysis Lab in the Kennedy Krieger Institute Baltimore Maryland

Sponsors (3)

Lead Sponsor Collaborator
Hugo W. Moser Research Institute at Kennedy Krieger, Inc. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Hand path distance during natural reaching to the trained target locations. Hand path distance is the percent above an ideal (straight reach) averaged over reaches to all 4 targets. To collect this measure, investigators will use motion capture equipment to record the positions of active markers that subjects will wear on their shoulder, elbow, wrist, and finger. Assessed every study visit week 1 to week 12
Secondary ICARS (International Cooperative Ataxia Rating Scale) ICARS is a standardized scale used to quantify the level of impairment in people with cerebellar ataxia. The ICARS is a 0- 100 point scale system with four subscales that include, postural and gait disturbances, limb ataxia, dysarthria, and Oculomotor disorders. Postural and gait disturbances are scaled 0 to 34 points. Limb ataxia is scaled 0 to 52 points. Dysarthria is scaled 0 to 8 points, and Oculomotor disorders is scaled 0 to 6 points. The higher the score indicates greater impairment. Assessed week 1 before the first training session, and week 12
Secondary ARAT ( Action Research Arm Test) The ARAT is an assessment used to measure changes in upper limb function in people who have experienced damage or disease to the nervous system (e.g., multiple sclerosis, stroke, Parkinson's disease, cerebellar ataxia). Assessed week 1 before the first training session, and week 12
See also
  Status Clinical Trial Phase
Recruiting NCT04039048 - Effect of ctDCS During Balance Training on Cerebellar Ataxia N/A
Not yet recruiting NCT04054726 - A Study on Cerebello-Spinal tPCS in Ataxia N/A
Completed NCT02887703 - Augmenting Balance in Individuals With Cerebellar Ataxias N/A
Completed NCT02540655 - Efficacy and Safety Study of Stemchymal® in Polyglutamine Spinocerebellar Ataxia Phase 2
Recruiting NCT01958177 - Clinical Study to Evaluate the Safety and Efficacy BMMNC in Cerebellar Ataxia Phase 1/Phase 2
Recruiting NCT03972202 - The Role of Cerebellum in Speech N/A
Recruiting NCT03341416 - Effects of Deep Brain Stimulation of the Dentate Nucleus on Cerebellar Ataxia N/A
Completed NCT05095870 - Evaluation of the Peripheral Nerve Ultrasound as a Diagnostic Tool in CANVAS Neuropathies
Completed NCT04790981 - Effect of Motor Imagery Training on Ataxic Children After Medulloblastoma Resection N/A
Completed NCT02900508 - Virtual Reality-based Training in Cerebellar Ataxia N/A
Active, not recruiting NCT05024240 - Interaction of the Cognitive and Sensory-cognitive Tasks With Postural Stability in Individuals With Stability Disorders N/A
Completed NCT00006492 - Gluten-Free Diet in Patients With Gluten Sensitivity and Cerebellar Ataxia N/A
Completed NCT01649687 - Treatment of Cerebellar Ataxia With Mesenchymal Stem Cells Phase 1/Phase 2
Completed NCT04750850 - Core Stability Exercises and Hereditary Ataxia N/A
Active, not recruiting NCT05157802 - Promoting Physical Activity Engagement for People With Early-stage Cerebellar Ataxia Phase 1
Completed NCT05278091 - Evaluation of the Diagnostic Value of Video-oculography in CANVAS Neuronopathies
Completed NCT05436262 - Using Real-time fMRI Neurofeedback and Motor Imagery to Enhance Motor Timing and Precision in Cerebellar Ataxia N/A
Active, not recruiting NCT06152133 - Telerehabilitation, Core Stability Exercises and Hereditary Ataxia (TRCore-ataxia) N/A
Completed NCT04648501 - Dual Task Training for Cerebellar Ataxia N/A
Enrolling by invitation NCT03269201 - Brain Network Activation in Patients With Movement Disorders