Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01539382
Other study ID # GCO 11-0891
Secondary ID
Status Completed
Phase N/A
First received February 21, 2012
Last updated October 22, 2015
Start date November 2011
Est. completion date December 2014

Study information

Verified date October 2015
Source Icahn School of Medicine at Mount Sinai
Contact n/a
Is FDA regulated No
Health authority United States: Institutional Review Board
Study type Interventional

Clinical Trial Summary

The purpose of this study is to test whether keeping the amount of oxygen delivered to the brain above a certain level during surgery and 24-hours after surgery improves recovery.

Hypothesis 1: keeping the amount of oxygen delivered to the brain above a certain level during surgery and 24-hours after surgery improves cognitive and neurological outcomes after cardiac and aortic surgery.

Hypothesis 2: keeping the amount of oxygen delivered to the brain above a certain level during surgery and 24-hours after surgery helps reduce major organ problems after cardiac and aortic surgery.

To test our hypotheses, the investigators will conduct a randomized control trial. Patients will be randomly assigned to one of two possible study groups. In the Treatment Group, the brain oxygen level will be watched by doctors and used to guide care in the operating room and the first day in the intensive care unit after surgery. Doctors will try to keep the brain oxygen level in a normal range by adjusting your blood pressure, carbon dioxide and blood acidity levels, and blood count. In the Control Group, the doctors will not be aware of the brain oxygen level unless it falls below a level that may be dangerous. If a patient's brain oxygen falls below such a level, the doctors will adjust the blood pressure, carbon dioxide and blood acidity levels, and blood count to increase the brain oxygen level. All other procedures will be part of regular medical care and will be performed according to the standard of care.


Description:

Background

There is a high incidence of cognitive dysfunction, neurological dysfunction, and multi-system organ dysfunction syndrome following cardiac surgery. There is preliminary evidence that optimization of cerebral oxygenation is associated with improved neurological and clinical outcomes.

Cerebral oximetry using near infrared spectroscopy (NIRS) is based on the ability of near-infrared light to penetrate scalp and skull, and its differential intracranial absorbance by oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb). Cerebral oximetry measures regional cerebral tissue oxygen saturation (SctO2) at the microvascular level (arterioles, venules, and capillaries) and provides information on the availability of oxygen in brain tissue. Unlike digital pulse oximetry, SctO2 reflects regional cerebral metabolism and the regional balance of cerebral oxygen supply and demand. NIRS SctO2 is the most promising monitoring technology for the purpose of guiding interventions targeted to improve brain and other organ preservation. The reasons for this include: (1) SctO2 is continuous, non-invasive, and available at the point of care; and (2) SctO2 is a sensitive index of cerebral hypoxia and/or cerebral ischemia, which are the main causes of brain injury in clinical settings. The preliminary work of Murkin strongly suggests that optimizing tissue perfusion using protocol-based treatments that optimize SctO2 decrease end-organ dysfunction in cardiothoracic surgical patients.

Recruitment Methods

Potential subjects are patients who are planned to undergo elective cardiac surgery at Mount Sinai Hospital. Potential subjects will be identified by checking the pre-admission schedule f or cardiothoracic surgery on a daily basis. Patients will be recruited at the surgical pre-admission screening; written informed consent will be obtained.

Risks to Subjects

Cerebral oximetry and computerized neurocognitive testing pose no known risk of harm to subjects.

Cerebral oximetry is an evolving technology that is not currently or imminently becoming a standard of care in monitoring for cardiothoracic surgical patients. The expense and the lack of outcome data make this a discretionary monitoring technology that is advocated by some, but that is not incorporated into any evidence-based guidelines or practice parameters. Therefore, compared with the existing standards of care, patients are not exposed to additional risk by withholding cerebral oximetry information from the practitioners.

Interventions to maintain cerebral oximetry above threshold values could be potentially injurious (e.g., initiating a red blood cell transfusion when it would not otherwise be given), however, any potential risk that is imparted by the interventions to maintain cerebral oximetry values are justified by the benefits of averting low or very low period of cerebral oximetry within the context of this research protocol.


Recruitment information / eligibility

Status Completed
Enrollment 140
Est. completion date December 2014
Est. primary completion date December 2014
Accepts healthy volunteers No
Gender Both
Age group 18 Years and older
Eligibility Inclusion Criteria:

- Adult patients scheduled to undergo elective cardiac or thoracic aortic surgery requiring cardiopulmonary bypass

Exclusion Criteria:

- Severe preoperative cognitive impairment (i.e., dementia or developmental intellectual disability)

- Sensory or motor impairment that would preclude reliable operation of a computer and keyboard

- Lack of access to use computer-based cognitive evaluation

- Non-English speaking patients

- Renal failure requiring dialysis

- Respiratory failure requiring home oxygen use

- Child's B or C hepatic failure

Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Single Blind (Subject), Primary Purpose: Prevention


Related Conditions & MeSH terms


Intervention

Procedure:
Cerebral oxygenation intervention
The protocol for interventions to increase cerebral oxygenation levels above 60% optimizing pH, PaO2, PaCO2, bispectral index, central venous pressure, mean arterial pressure, venous oxygen saturation, and hematocrit. In addition, cerebral perfusion pressure of 70-80 mm Hg and flow >2.0 l/min/m2 will be maintained during cardiopulmonary bypass. In the ICU, temperatures will be maintained below 38 degrees by administering antipyretics or cooling, and dexmedetomidine will be used if the patient is agitated.

Locations

Country Name City State
United States Icahn School of Medicine at Mount Sinai New York New York

Sponsors (1)

Lead Sponsor Collaborator
Icahn School of Medicine at Mount Sinai

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Postoperative neurocognitive decline Postoperative cognitive deficit as defined as negative changes in Z-score of greater than or equal to 1.0 in any of the four neurocognitive domains tested by neurocognitive assessment (Response Speed, Processing Speed, Attention, and Memory). Baseline (before surgery) No
Primary Postoperative neurocognitive decline Postoperative cognitive deficit as defined as negative changes in Z-score of greater than or equal to 1.0 in any of the four neurocognitive domains tested by neurocognitive assessment (Response Speed, Processing Speed, Attention, and Memory). 3 months after surgery No
Primary Postoperative neurocognitive decline Postoperative cognitive deficit as defined as negative changes in Z-score of greater than or equal to 1.0 in any of the four neurocognitive domains tested by neurocognitive assessment (Response Speed, Processing Speed, Attention, and Memory). 6 months after surgery No
Secondary Neurological dysfunction Delirium, stroke with neurological deficit at hospital discharge, persistent vegetative state, or brain death. During the hospitalization for postoperative recovery, average 8 days No
Secondary Multiple organ dysfunction Non-neurological postoperative organ dysfunction, defined as any of the following: intraoperative or non-neurological death within 1 year of surgery; ICU Length of Stay > 10 days; Acute Respiratory Distress Syndrome or respiratory failure > 5 days; need for renal replacement therapy; bilirubin > 3mg/dl, diagnosis of SIRS, sepsis, or DIC; multiple organ dysfunction syndrome (MODS), as defined by SOFA score > 5 at any time during ICU stay. During the hospitalization for postoperative recovery, average 8 days No
See also
  Status Clinical Trial Phase
Recruiting NCT05054179 - Pecto-Intercostal Fascial Plane Block Catheter Trial for Reduction of Sternal Pain Phase 2/Phase 3
Completed NCT04051021 - Non-Pharmacological Interventions on Patient Experience and Healthcare Utilization in Adult Cardiac Surgery Patients N/A
Recruiting NCT04604886 - The Consistency of Cardiac Output Measured by Pulmonary Artery Catheter and LiDCO in Cardiac Surgical Patients N/A
Recruiting NCT04075981 - Prevention Atrial Fibrillation by BOTulinum Toxin Injections (BOTAF) Phase 3
Completed NCT04062396 - Comparison of Remowell 2 and Inspire on Delirium and Cognitive Dysfunction N/A
Recruiting NCT04709705 - DMSO Cryopreserved Platelets in Cardiopulmonary Bypass Surgery (CRYPTICS) Phase 2/Phase 3
Not yet recruiting NCT05563662 - SURgical Registry of ENDocarditis EuRope
Withdrawn NCT03289104 - Improving Sternal Healing After Cardiac Surgery: Sternal Wire vs ZIPFIX N/A
Completed NCT03563196 - Diagnosis Of Pulmonary Complications After Cardiac Surgery In Children
Completed NCT02964026 - Study of Clinical Outcomes Associated With the Pulmonary Artery Catheter (PAC) in Cardiac Surgery Patients N/A
Completed NCT04199039 - Effects of Endotracheal Tube Fixation Methods on Hemodynamic Parameters During Endotracheal Suction N/A
Completed NCT02471001 - The Levels of Anaesthetics in Heart Muscle During Heart Surgery N/A
Completed NCT02325726 - RRI Compared With NephroCheckTM to Predict Acute Renal Failure After Cardiac Surgery. N/A
Completed NCT01246947 - Tricuspid Annuloplasty for Moderate Tricuspid Regurgitation Associated With Miral Operation N/A
Completed NCT01151254 - Comparison of Propofol Based Versus Volatile Based Anesthesia and Postoperative Sedation N/A
Completed NCT00821262 - Sevoflurane in Cardiac Surgery Phase 4
Completed NCT00996099 - Continuous Glucose Monitoring Combined With Computer Algorithm for Intensive Insulin Therapy in Cardiosurgical Patients N/A
Completed NCT00617955 - Effects of Aprotinin During Cardiac Surgery/Long Term Death Rates N/A
Completed NCT00337805 - Double Blind Randomized Trial of Saline vs Pentaspan for Resuscitation After Cardiac Surgery Phase 2/Phase 3
Completed NCT00336466 - The Erythropoietin NeuroProtective Effect: Assessment in CABG Surgery (TENPEAKS) Phase 2