Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02712476
Other study ID # Cerrahpasa Neuroanesthesia
Secondary ID
Status Completed
Phase N/A
First received March 1, 2016
Last updated March 14, 2016
Start date July 2013
Est. completion date November 2015

Study information

Verified date March 2016
Source Istanbul University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Although mannitol is used for brain relaxation during neurosurgery and in the treatment of raised intracranial pressure; there is not a consensus on its safe and effective dose, the duration of its administration and its use in combination with loop diuretics. This study aimed to compare the effects of the mannitol alone and in combination with furosemide in different doses, on the brain relaxation, electrolyte, lactate levels of the blood, peroperative fluid balance and the volume of the urine in supratentorial mass resection surgeries.

This prospective, randomized, double blind, placebo controlled study included fifty one patients (ASA I-III) scheduled for elective supratentorial mass resection surgery. The patients were randomized into three groups for investigation of the effects of mannitol alone and in combination with furosemide in different doses. Blood sodium, potassium, chlorine, lactate, urine and osmolarity levels were recorded. The brain relaxation score (BRS) was evaluated twice by the surgeon using a 4 point scale (1=very good, 2=good, 3=bad, 4=very bad); at dura opening, and 30 minutes after the administration of the study drug.


Description:

After obtaining approval from the ethics committee and informed consent, a total of 51 patients aged 20-70 years, conscious and American Society of Anesthesiologists (ASA) class I-III, who had intracranial shift and who were scheduled for supratentorial mass resection under elective conditions, were included in the present prospective, randomized, double-blind and placebo-controlled study. Patients with decompensated heart failure, kidney insufficiency, diabetes insipidus, electrolyte imbalance and who are unconscious were excluded from the study.

Drug doses were determined based on the ideal body weight (IBW) or adjusted body weight (ABW) if the real body weight was 30 percent higher than the calculated ideal weight.

After premedication with midazolam (0.03 mg.kg-1) (Dormicum®, Roche, Basel, Switzerland), the patients were moved to the operating room and placed under continuous monitoring with electrocardiography (ECG), non-invasive blood pressure measurement and peripheral oxygen saturation. Intravenous (IV) bolus doses of propofol (2 mg.kg-1) (Propofol®, Fresenius Kabi, Homburg, Germany) rocuronium (0.6 mg.kg-1) (Curon®, Mustafa Nevzat, Istanbul, Turkey), remifentanil infusion (0.15 µg.kg-1) (Ultiva®, Glaxo Smith Kline, London, UK) and 0.7 FiO2 oxygen-air were used in the induction of anesthesia, while remifentanil (0.15 µg.kg-1) (Ultiva®, Glaxo Smith Kline, London, UK), rocuronium (0.03 mg.kg-1) (Curon®, Mustafa Nevzat, Istanbul, Turkey) infusions, and 0.5-1 MAC sevoflurane (Sevorane®, Abbvie, North Chicago, USA) in a mixture of 0.4 FiO2 oxygen-air were used in the maintenance. A nasogastric tube was inserted into each patient after intubation, and invasive blood pressure monitoring was continued with arterial cannulation, while urine output was monitored by inserting a foley urinary catheter. The body temperature was measured by urinary catheter. In the IV fluid management; balanced fluids were administered (Isolayte-S® , Eczacıbaşı Baxter, Istanbul, Turkey) for maintenance and replacement, colloids and blood products were also administered in the case of bleeding. At the time of wound closure tramadol 100 mg (Contramal®, Abdi İbrahim, Istanbul, Turkey) and ondansetron 8 mg IV (Zofer®, Glaxo Smith Kline, London, UK) were administered. At the end of the operation, decurarization was carried out through the administration of atropine (0.01 mg.kg-1) (Atropine sülfat®, Galen, Istanbul, Turkey) and neostigmine (0.02 mg.kg-1) (Neostigmine®, Adeka, Samsun, Turkey).

The patients were randomized into 3 groups using a closed envelope method, group 1; mannitol 0.5 g.kg-1 and furosemide 0.5 mg.kg-1 (G1), group 2; mannitol 1 g.kg-1 and furosemide 0.5 mg.kg-1 (G2) and group 3; mannitol 0.5 g.kg-1 and placebo (G3). All medications were prepared by a single nurse in 100 mL of a 0.9 percent isotonic saline solution. After head fixation, all patients were administered with mannitol (over 20 minutes) and the study drug. Arterial blood gas (ABG) analysis (Cobas b 221 blood gas analyzer, Roche®, Basel, Switzerland) was made at 30 minute intervals in the first 2 hour and then again in the 6th, 12th and 24th hours after study drug administration. Blood sodium, potassium, chlorine, lactate levels and urine output were recorded in each intervals. Blood osmolarity measured levels were recorded before the study drug administration and 2nd hours. The brain relaxation score (BRS) was evaluated twice by the surgical team using a 4 point scale (1= very good, 2= good, 3= bad, 4= very bad); first, at the time of dura opening, and second, 30 minutes after the administration of the study drug.

All patients were extubated at the end of the surgery and followed in the neurosurgical-intensive care unit (NICU) for 24 hours postoperatively.

The surgery type was recorded. The volume of peroperative blood loss, transfused blood products, the volume of the given peroperative IV fluids and fluid balance were also recorded.

Statistical analysis:

On the basis of previous study (10) and the assumption that a difference of 1 unit on BRS from 1 to 4 in brain relaxation is clinically relevant, setting α equal to 0.05 and β equal to 0.9, we calculated a sample size of 15 patients per group. To compensate for dropouts, the study included 51 patients.

Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) for Windows 21.0. Differences between the groups were analysed by using one-way analysis of variance (ANOVA) with the post-hoc Tukey analysis. The differences in ASA, gender and BRS between groups were analyzed by using Pearson chi-square test. Differences within groups in electrolyte and lactate levels, osmolarity and BRS were analyzed by repeated measures of ANOVA with the post-hoc Bonferroni correction test. Values of p ≤ 0.05 were considered statistically significant.


Recruitment information / eligibility

Status Completed
Enrollment 47
Est. completion date November 2015
Est. primary completion date May 2015
Accepts healthy volunteers No
Gender All
Age group 20 Years to 70 Years
Eligibility Inclusion Criteria:

- Intracranial shift

- Scheduled for supratentorial mass resection under elective conditions

Exclusion Criteria:

- Decompensated heart failure

- kidney insufficiency

- Diabetes insipidus,

- Electrolyte imbalance and

- Who are unconscious

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
mannitol
This drug is in our routine use of neuroanesthesia, are given in peroperatifyl brain relaxation
Furosemide
This drug is can be used alone or with mannitol for brain relaxation
placebo
mannitol alone is compared with placebo

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Istanbul University

References & Publications (13)

Bebawy JF, Ramaiah VK, Zeeni C, Hemmer LB, Koht A, Gupta DK. The effect of furosemide on intravascular volume status and electrolytes in patients receiving mannitol: an intraoperative safety analysis. J Neurosurg Anesthesiol. 2013 Jan;25(1):51-4. doi: 10. — View Citation

Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Ne — View Citation

Li Q, Chen H, Hao JJ, Yin NN, Xu M, Zhou JX. Agreement of measured and calculated serum osmolality during the infusion of mannitol or hypertonic saline in patients after craniotomy: a prospective, double-blinded, randomised controlled trial. BMC Anesthesi — View Citation

Manninen PH, Lam AM, Gelb AW, Brown SC. The effect of high-dose mannitol on serum and urine electrolytes and osmolality in neurosurgical patients. Can J Anaesth. 1987 Sep;34(5):442-6. Review. — View Citation

Pollay M, Fullenwider C, Roberts PA, Stevens FA. Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg. 1983 Dec;59(6):945-50. — View Citation

Procaccio F, Stocchetti N, Citerio G, Berardino M, Beretta L, Della Corte F, D'Avella D, Brambilla GL, Delfini R, Servadei F, Tomei G. Guidelines for the treatment of adults with severe head trauma (part I). Initial assessment; evaluation and pre-hospital — View Citation

Procaccio F, Stocchetti N, Citerio G, Berardino M, Beretta L, Della Corte F, D'Avella D, Brambilla GL, Delfini R, Servadei F, Tomei G. Guidelines for the treatment of adults with severe head trauma (part II). Criteria for medical treatment. J Neurosurg Sc — View Citation

Quentin C, Charbonneau S, Moumdjian R, Lallo A, Bouthilier A, Fournier-Gosselin MP, Bojanowski M, Ruel M, Sylvestre MP, Girard F. A comparison of two doses of mannitol on brain relaxation during supratentorial brain tumor craniotomy: a randomized trial. A — View Citation

Rozet I, Tontisirin N, Muangman S, Vavilala MS, Souter MJ, Lee LA, Kincaid MS, Britz GW, Lam AM. Effect of equiosmolar solutions of mannitol versus hypertonic saline on intraoperative brain relaxation and electrolyte balance. Anesthesiology. 2007 Nov;107( — View Citation

Schettini A, Stahurski B, Young HF. Osmotic and osmotic-loop diuresis in brain surgery. Effects on plasma and CSF electrolytes and ion excretion. J Neurosurg. 1982 May;56(5):679-84. — View Citation

Thenuwara K, Todd MM, Brian JE Jr. Effect of mannitol and furosemide on plasma osmolality and brain water. Anesthesiology. 2002 Feb;96(2):416-21. — View Citation

Todd MM, Cutkomp J, Brian JE. Influence of mannitol and furosemide, alone and in combination, on brain water content after fluid percussion injury. Anesthesiology. 2006 Dec;105(6):1176-81. — View Citation

Vialet R, Léone M, Albanèse J, Martin C. Calculated serum osmolality can lead to a systematic bias compared to direct measurement. J Neurosurg Anesthesiol. 2005 Apr;17(2):106-9. — View Citation

* Note: There are 13 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary brain relaxation score evaluated by surgical team using 4 point scale (1= very good, 2= good, 3= bad, 4= very bad) Change in brain relaxation in 30 minutes after drug administration
Secondary Blood sodium levels (mEq/L) change in 30 minute intervals in the first 2 hour and then again in the 6th, 12th and 24th hours after study drug administration
Secondary Blood potassium levels (mEq/L) change in 30 minute intervals in the first 2 hour and then again in the 6th, 12th and 24th hours after study drug administration
Secondary Blood chlorine levels (mEq/L) change in 30 minute intervals in the first 2 hour and then again in the 6th, 12th and 24th hours after study drug administration
Secondary Blood lactate levels (mmol/L) change in 30 minute intervals in the first 2 hour and then again in the 6th, 12th and 24th hours after study drug administration
Secondary 24 hours diuresis (mL) change in 24th hours after study drug administration
Secondary Fluid balance during operation (mL) Change in balance during operation time
See also
  Status Clinical Trial Phase
Active, not recruiting NCT02846038 - Understanding Communication in Healthcare to Achieve Trust (U-CHAT)
Completed NCT02537106 - A Comparison of the Effect of 1.5 Versus 3% NaCl on Brain Relaxation and Microcirculation N/A
Completed NCT01951950 - Nicardipine vs Esmolol Craniotomy Emergence Phase 1
Completed NCT01222780 - To Evaluate the Safety, Activity and Pharmacokinetics of Marqibo in Children and Adolescents With Refractory Cancer Phase 1
Completed NCT00873184 - Study of Massage Therapy Within a Brain Tumor Setting N/A
Active, not recruiting NCT01115777 - Prospective Assessment of Quality of Life (QOL) in Pediatric Patients Treated With Radiation Therapy for Brain Tumors and Non-central Nervous System (Non-CNS) Malignancies
Completed NCT00724191 - Evaluation of Human Brain Tumor Therapy Response by Magnetic Resonance (MR)
Completed NCT00003935 - Combination Chemotherapy Plus Radiation Therapy in Treating Children With Newly Diagnosed Brain Stem Glioma Phase 1
Recruiting NCT04128306 - Brain Areas of Time-To-Contact Perception: an Awake Surgery Study N/A
Recruiting NCT05202899 - Effect of Sugammadex for Reversal of Rocuronium-induced Neuromuscular Block on Perioperative Management of Awake Craniotomy Phase 4
Completed NCT00707343 - [F-18] Fluorothymidine (FLT) Imaging on Patients With Primary Brain Tumors Phase 1
Completed NCT00850278 - Assessment of [18F]FLT-PET Imaging for Diagnosis and Prognosis of Brain Tumors N/A
Terminated NCT00107471 - Topotecan, G-CSF, and Radiation Therapy in Treating Young Patients With Newly Diagnosed Brain Stem Glioma Phase 1/Phase 2
Completed NCT00528437 - Temozolomide,Thiotepa and Carboplatin With Autologous Stem Cell Rescue Followed by 13-cis-retinoic Acid in Patients With Recurrent/Refractory Malignant Brain Tumors Phase 2
Completed NCT00187174 - Everolimus for Treating Pediatric Patients With Recurrent or Refractory Tumors Phase 1
Completed NCT00135876 - Dalteparin Low Molecular Weight Heparin for Primary Prophylaxis of Venous Thromboembolism in Brain Tumour Patients Phase 3
Completed NCT00062478 - Study of Karenitecin (BNP1350) in Patients With Brain Tumors Phase 2
Completed NCT00241670 - Fluorescence-guided Resection of Malignant Gliomas With 5-Aminolevulinic Acid Phase 3
Not yet recruiting NCT01445691 - More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery Phase 2
Terminated NCT01018290 - Navigated Transcranial Magnetic Stimulation in Tumor Surgery N/A

External Links