Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02649699
Other study ID # HREBA CC 14-0163
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date April 14, 2016
Est. completion date June 25, 2021

Study information

Verified date January 2024
Source AHS Cancer Control Alberta
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this pilot study is to test new magnetic resonance imaging (MRI) acquisition and processing techniques on primary brain tumor patients. The objectives are to improve image-guided radiation therapy (IGRT) planning (first part of the study) and treatment monitoring (second part).


Description:

In traditional IGRT the radiation treatment is planned and simulated on computers using x-ray computed tomography (CT) images alone or a combination of CT and MRI. The CT mostly provides information about attenuation of radiation beams needed for the dose simulations because most tumours are more readily identified and contoured with MRI. However, fusion of CT and MR images is prone to error and is a time-consuming process that cannot be automated reliably. Previous research (Stanescu et al.) has shown that the attenuation information can be obtained from MRI which, unlike CT, does not use ionizing radiation to create images. Eliminating the CT scan is therefore possible and beneficial to both the patient, who avoids an additional dose of diagnostic x rays, and to the health care system which saves resources that can be used elsewhere. Our new MRI acquisition and processing techniques (performed at 3 tesla i.e. 3T) enable: 1. the extraction of 4 different quantitative parameters (hence "multi-parametric MRI", quantitative MRI or relaxometry) that are normally not accessible in traditional MRI, and 2. the automatic classification of tissues (e.g. bone, air, adipose, soft tissue, etc.) which is needed for dose computation in IGRT planning In the first part of the study (dosimetry) these MRI methods will be used to generate a pseudo-CT to replace the traditional CT data. The hypothesis is that dosimetry can be accurately calculated for primary brain cancer patients using the pseudo-CT, thus allowing radiation treatment planning using MRI only. The IGRT treatments planned using qMRI will be compared to those planned conventionally. The second part of the study (treatment monitoring) aims to evaluate the ability of qMRI techniques to provide clinical information such as distinguishing between progression and pseudo-progression, assessing treatment effectiveness or prognosis. The hypothesis is that qMRI can provide increased sensitivity to biological changes in tumors associated with disease progression over conventional (T1- or T2-weighted) MRI. The reasoning is that by providing quantitative, rather than weighted, images, direct numerical comparisons can be made between images acquired at different time points or at different centres. With traditional MRI, only limited, qualitative comparisons of tumor morphology or relative intensity within the same image can be made. Therefore, 3 or more follow-up MRI scans will also be acquired 3, 6 and 12 months after treatment and at recurrence, transformation, or pseudoprogression to monitor the effectiveness of the treatment. These techniques will be tested on primary brain cancer patients undergoing IGRT, and the following data will be required: 1. the patient's IGRT treatment plan, as well as the planning CT and MRI datasets, and 2. additional scanning sessions approximately 45 minutes in duration to acquire MRIs of the patient with the new techniques at 3T. One of the sessions is prior to the beginning of the course of radiation therapy (first part of the study) and the remaining are after the completion of their radiation treatment (second part of the study). Traditional treatment and follow-up care are unchanged.


Recruitment information / eligibility

Status Completed
Enrollment 30
Est. completion date June 25, 2021
Est. primary completion date June 25, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - At least 18 years of age. - Competent to sign informed consent. - Diagnosed with primary tumor of the brain. - Undergoing IGRT. - Willing to participate in initial and follow up scan(s). - Can lie supine in the MRI scanner for a period of about 45 minutes. - Has signed informed consent. Exclusion Criteria: - Pregnancy. - Contraindications to MRI (e.g., pacemakers, magnetic implants, metal in eye, claustrophobia). - Has metallic implants in regions of interest (dental braces are okay).

Study Design


Related Conditions & MeSH terms


Intervention

Other:
3D MRI Scans
Patients will receive additional MRI scans before commencing their radiation treatment, at 3-4 months, 6 months and 12 months post RT as well as at recurrence or suspected recurrence.

Locations

Country Name City State
Canada Cross Cancer Institute Edmonton Alberta

Sponsors (1)

Lead Sponsor Collaborator
AHS Cancer Control Alberta

Country where clinical trial is conducted

Canada, 

Outcome

Type Measure Description Time frame Safety issue
Primary Comparisons of radiation treatment plans by means of tumor control probabilities calculated from dose-volume histograms 12 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT02846038 - Understanding Communication in Healthcare to Achieve Trust (U-CHAT)
Completed NCT02537106 - A Comparison of the Effect of 1.5 Versus 3% NaCl on Brain Relaxation and Microcirculation N/A
Completed NCT01951950 - Nicardipine vs Esmolol Craniotomy Emergence Phase 1
Completed NCT01222780 - To Evaluate the Safety, Activity and Pharmacokinetics of Marqibo in Children and Adolescents With Refractory Cancer Phase 1
Completed NCT00873184 - Study of Massage Therapy Within a Brain Tumor Setting N/A
Active, not recruiting NCT01115777 - Prospective Assessment of Quality of Life (QOL) in Pediatric Patients Treated With Radiation Therapy for Brain Tumors and Non-central Nervous System (Non-CNS) Malignancies
Completed NCT00003935 - Combination Chemotherapy Plus Radiation Therapy in Treating Children With Newly Diagnosed Brain Stem Glioma Phase 1
Completed NCT00724191 - Evaluation of Human Brain Tumor Therapy Response by Magnetic Resonance (MR)
Recruiting NCT04128306 - Brain Areas of Time-To-Contact Perception: an Awake Surgery Study N/A
Recruiting NCT05202899 - Effect of Sugammadex for Reversal of Rocuronium-induced Neuromuscular Block on Perioperative Management of Awake Craniotomy Phase 4
Completed NCT00707343 - [F-18] Fluorothymidine (FLT) Imaging on Patients With Primary Brain Tumors Phase 1
Completed NCT00850278 - Assessment of [18F]FLT-PET Imaging for Diagnosis and Prognosis of Brain Tumors N/A
Terminated NCT00107471 - Topotecan, G-CSF, and Radiation Therapy in Treating Young Patients With Newly Diagnosed Brain Stem Glioma Phase 1/Phase 2
Completed NCT00528437 - Temozolomide,Thiotepa and Carboplatin With Autologous Stem Cell Rescue Followed by 13-cis-retinoic Acid in Patients With Recurrent/Refractory Malignant Brain Tumors Phase 2
Completed NCT00187174 - Everolimus for Treating Pediatric Patients With Recurrent or Refractory Tumors Phase 1
Completed NCT00135876 - Dalteparin Low Molecular Weight Heparin for Primary Prophylaxis of Venous Thromboembolism in Brain Tumour Patients Phase 3
Completed NCT00062478 - Study of Karenitecin (BNP1350) in Patients With Brain Tumors Phase 2
Completed NCT00241670 - Fluorescence-guided Resection of Malignant Gliomas With 5-Aminolevulinic Acid Phase 3
Not yet recruiting NCT01445691 - More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery Phase 2
Terminated NCT01018290 - Navigated Transcranial Magnetic Stimulation in Tumor Surgery N/A