Brain Tumor Clinical Trial
Official title:
Development of Magnetic Resonance Fingerprinting for Characterization of Brain Tumors After Radiotherapy
The purpose of this study is to discover the potential convenience and ease of using a Magnetic Resonance Imaging (MRI) technique, named Magnetic Resonance Fingerprinting (or MRF), to achieve high-quality images within a short scan time of 5 min for viewing the entire brain. This is an advanced quantitative assessment of brain tissues. This method is being applied with IVIM MRI to be able to tell the difference between a brain with radiation necrosis and a brain with tumor recurrence. Participants will consist of individuals who have received radiation therapy in the past and were diagnosed with radiation necrosis, individuals with recurrent tumors, and healthy individuals who have no brain diseases and have not had radiation treatment to the brain. Participants will undergo an MRI scan at a one-time research study visit; no extra tests or procedures will be required for this research study. The primary objectives of this study are: - To demonstrate the clinical feasibility of combining MRF with state-of-the-art parallel imaging techniques to achieve high-resolution quantitative imaging within a reasonable scan time of 5 min for whole brain coverage. - To apply the developed quantitative approach in combination with IVIM MRI for differentiation of tumor recurrence and radiation necrosis.
Although Stereotactic radiosurgery (SRS) is utilized as an effective treatment method, after several months to over 1 year following SRS, 33% of treated brain metastases increase in size on imaging, which is suspicious for tumor progression. However, based on findings in follow-up biopsies, the majority of newly detected metastases on imaging are radiation treatment effects instead of active tumor. So far, the only gold standard to differentiate active tumor and radiation necrosis is surgical resection for pathologic confirmation, which is invasive, not favored for poor surgical candidates, and should be avoided in cases of necrosis. The existing clinical imaging techniques have poor sensitivity or specificity in differentiating these two types of tissues. Recently, a novel MRI data acquisition approach, namely MR Fingerprinting (MRF), has been introduced for the simultaneous measurement of multiple important parameters in a single MRI scan. In addition, quantitative diffusion MRI, such as the intravoxel incoherent motion (IVIM) technique, can provide a noninvasive and powerful tool to quantify microstructural information by measuring water diffusion and microcirculation perfusion in vivo. This study aims to demonstrate the clinical feasibility of combining MRF with state-of-the-art parallel imaging techniques to achieve high-resolution quantitative imaging within a reasonable scan time of 5 min for whole brain coverage. It also aims to apply the developed quantitative approach in combination with IVIM MRI for the differentiation of tumor recurrence and radiation necrosis. The multi-parametric quantitative measures developed in this study could establish a new fundamental biomarker for the diagnosis and monitoring of brain tumors ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05023434 -
A Study to Measure the Effect of Brain Stimulation on Hand Strength and Function in Patients With Brain Tumors
|
||
Completed |
NCT04474678 -
Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!")
|
N/A | |
Completed |
NCT02768389 -
Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma
|
Early Phase 1 | |
Terminated |
NCT01902771 -
Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors
|
Phase 1 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT03286335 -
Local Control, Quality of Life and Toxicities in Adults With Benign or Indolent Brain Tumors Undergoing Proton Radiation Therapy
|
N/A | |
Recruiting |
NCT05968053 -
Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
|
||
Recruiting |
NCT05358340 -
Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions
|
N/A | |
Recruiting |
NCT03276676 -
[18F]Fluciclovine and [18F]FLT PET/CT Assessment of Primary High-Grade Brain Tumors
|
Phase 2 | |
Completed |
NCT02851355 -
Follow-up Survey of Patients Who Were Treated for Medulloblastoma or Primitive Neuroectodermal Tumors of the Central Nervous in Norway
|
||
Completed |
NCT02409121 -
A Novel Health Information Technology System (BMT Roadmap) for Pediatric BMT Patients and Caregivers
|
N/A | |
Completed |
NCT02713087 -
Vasopressor Effects in Anesthetized Patients
|
Phase 4 | |
Completed |
NCT02558569 -
The Use of Fentanyl in General Anesthesia for Craniotomy With or Without 0.5% Levobupivacaine Scalp Block
|
Phase 4 | |
Terminated |
NCT02674945 -
Understanding and Improving Quality of Life Through a Wireless Activity Tracker: Observational Phase
|
||
Withdrawn |
NCT02165995 -
Use of Navigated Transcranial Magnetic Stimulation (nTMS) in Generated Motor and Language Mapping to Evaluate Brain Recovery Following Surgery
|
N/A | |
Withdrawn |
NCT01202539 -
Real-time Assessment of Frameless Intrafraction Motion
|
||
Completed |
NCT01171469 -
Vaccination With Dendritic Cells Loaded With Brain Tumor Stem Cells for Progressive Malignant Brain Tumor
|
Phase 1 | |
Terminated |
NCT01044966 -
A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT00760409 -
Differentiating Recurrent Brain Tumor Versus Radiation Injury Using MRI
|
N/A | |
Completed |
NCT00503204 -
Phase I : Cediranib in Combination With Lomustine Chemotherapy in Recurrent Malignant Brain Tumour
|
Phase 1 |