Clinical Trials Logo

Brain Stem Glioma clinical trials

View clinical trials related to Brain Stem Glioma.

Filter by:
  • Completed  
  • Page 1

NCT ID: NCT01514201 Completed - Glioblastoma Clinical Trials

Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

Start date: February 1, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.

NCT ID: NCT01502917 Completed - Brain Cancer Clinical Trials

Convection-Enhanced Delivery of 124I-Omburtamab for Patients With Non-Progressive Diffuse Pontine Gliomas Previously Treated With External Beam Radiation Therapy

Start date: December 2011
Phase: Phase 1
Study type: Interventional

The purpose of this study is to test the safety of a new method to treat Diffuse Intrinsic Pontine Glioma (DIPG). The researchers will use "convection-enhanced delivery" (CED) to deliver an agent called 124I-omburtamab. CED is performed during surgery. The study agent is infused through a small tube placed into the tumor in the brain. Many studies have shown this can safely be done in animals but this study is the first time 124I-omburtamab will be given by CED in humans. This will be one of the first times that CED has been performed in the brain stem. Omburtamab is something called an antibody. Antibodies are made by the body to fight infections and sometimes cancer. The antibody omburtamab is produced by mice and can attack many kinds of tumors. A radioactive substance, 124I-omburtamab, is attached to omburtamab. 124I-omburtamab sticks to parts of tumor cells and can cause the tumor cells to die from radiation. Studies have also been done on humans using 124I-omburtamab to treat other kinds of cancer. Our studies of some DPG and related tumors suggest that omburtamab will bind to the tumor, but the investigators don't know that for sure. In this study, the researchers want to find out how safe 124I-omburtamab given by CED is at different dose levels. They will look to see what effects (both good and bad) it has on the patient. The dose of 124I-omburtamab will increase for each new group of patients. The procedure has already been safely performed with lower doses and infusion volumes in a number of patients here at MSKCC. The amount they get will depend on when they enter the study. If too many serious side effects are seen with a certain dose, no one will be treated with a higher dose, and some more patients may be treated with a lower dose to make sure that dose is safe.

NCT ID: NCT01236560 Completed - Brain Stem Glioma Clinical Trials

Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients With Newly Diagnosed High-Grade Glioma

Start date: January 26, 2011
Phase: Phase 2/Phase 3
Study type: Interventional

This randomized phase II/III trial is studying vorinostat, temozolomide, or bevacizumab to see how well they work compared with each other when given together with radiation therapy followed by bevacizumab and temozolomide in treating young patients with newly diagnosed high-grade glioma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving vorinostat is more effective then temozolomide or bevacizumab when given together with radiation therapy in treating glioma.

NCT ID: NCT01082926 Completed - Glioblastoma Clinical Trials

Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+ Cytolitic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination With Interleukin-2

Start date: May 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Donor T cells that are treated in the laboratory may be effective treatment for malignant glioma. Aldesleukin may stimulate the white blood cells to kill tumor cells. Combining different types of biological therapies may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best way to give therapeutic donor lymphocytes together with aldesleukin in treating patients with stage III or stage IV malignant glioma.

NCT ID: NCT00576641 Completed - Glioblastoma Clinical Trials

Immunotherapy for Patients With Brain Stem Glioma and Glioblastoma

Start date: May 2007
Phase: Phase 1
Study type: Interventional

The purpose of the Dendritic Cell Immunotherapy study for patients with glioblastoma and/or brainstem glioma is to determine whether in patients with malignant brain tumors, dendritic cells injected peripherally can reactivate the immune system against the brain tumor.

NCT ID: NCT00418327 Completed - Clinical trials for Malignant Brain Tumor

Safety Study of Tarceva in Children With Refractory and Relapsed Malignant Brain Tumors and Newly Diagnosed Brain Stem Glioma

Start date: June 2005
Phase: Phase 1
Study type: Interventional

The purpose of this study is to establish the recommended dose/Maximum Tolerated Dose (MTD) of Tarceva in children as single agent and in combination with radiation therapy