Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00142090
Other study ID # 04139-C
Secondary ID 11266
Status Completed
Phase N/A
First received September 1, 2005
Last updated February 2, 2009
Start date November 2004
Est. completion date July 2007

Study information

Verified date January 2009
Source Rady Children's Hospital, San Diego
Contact n/a
Is FDA regulated No
Health authority United States: Institutional Review Board
Study type Interventional

Clinical Trial Summary

The purpose of this study is to find out if 3% hypertonic saline (salt-water solution) given in a vein improves the headache that may be caused by a concussion. 3% hypertonic saline may also improve some of the other symptoms that may be caused by concussion (for example: confusion, nausea, vomiting).

This research is being done because there have been previous experience which suggests that 3% hypertonic saline has been beneficial in the treatment of children with more severe brain injury.


Description:

A concussion is formally described as a clinical syndrome characterized by immediate and transient changes in brain function including alteration of mental status and level of consciousness, resulting from mechanical force or trauma. Despite its prevalence, its pathophysiology remains a mystery as does its spectrum of clinical presentation.

A concussion, sometimes described as a mild traumatic brain injury (TBI), can often present with initial loss of consciousness, change in behavior, confusion, amnesia, or aphasia which all result in a Glasgow Coma Scale (GCS) that is less than normal. As the time from the initial injury lengthens, these symptoms can progressively worsen and new symptoms such as vomiting and headaches can also develop. Usually, there is no evidence of a significant intracranial injury by computed tomography (CT) imaging and these symptoms often improve with a gradual progression towards a normal neurologic baseline; in fact, the risk of complication in this population is very rare. The time for this improvement varies greatly and can occur over a period ranging from hours to days. During this transient time, the patient is often very uncomfortable due to persistent headaches, inability to tolerate oral intake due to nausea and/or vomiting, confusion, and episodes of amnesia. In some instances, the combative behavior of the patient can be difficult to tolerate both by the family and the medical staff.

Just as the symptoms caused by a concussion vary greatly in presentation and duration, so do the theories behind the pathophysiology of mild TBI. The transient loss of cerebral function after a head injury was formally differentiated from severe head injury for the first time by the Persian physician Rhazes in 900 AD and has since caused much speculation and varying clinical descriptions throughout history. It took another 500 years before a "commotion" or shaking of the brain was theorized to be responsible for clinical signs. Presently, the exact cause of concussive symptoms continue to remain an enigma; a major question however, is whether a concussion is due to a lesser degree of diffuse structural change seen in severe traumatic brain injury, or if it is in fact a mechanism caused by reversible functional changes of the neurons and axons.

Animal models have demonstrated altered metabolic profiles of the brain tissue which resolves within hours of initial insult. Other animal models have demonstrated a change in the integrity of the microvascular endothelium after TBI. It can be hypothesized that there are areas of "microcontusion" and pericontusional edema that maybe responsible for alterations in brain chemistry which may ultimately lead to the clinical symptoms associated with mild TBI. Multiple other studies have theorized that the direct and indirect effects of trauma on cerebral vasculature may lead to a vasoconstrictive phenomenon that may be responsible for postconcussive symptoms.

Currently, the management of patients with mild traumatic brain injuries includes observation and symptomatic therapies including analgesia without obscuring a neurologic exam (acetaminophen) and antiemetic measures (ondansetron). While many patients are often discharged home after initial evaluation in the Emergency Department, some are admitted to the hospital for supportive care. The symptoms may resolve in a period of hours to days.

There has been substantial retrospective data and limited prospective data in children which suggests that hypertonic saline (HTS) can improve the control of intracranial pressure (ICP) in patients with acute brain injury. In 1992, a report published by the Journal of Neurosurgical Anesthesiology indicated that HTS reduced elevated ICP in children after head injury. This study looked at a single intravenous bolus of HTS in comparison to the same volume of normal saline and demonstrated a clear difference. Subsequently, it was demonstrated that HTS appears to be efficacious in controlling ICP. In a retrospective chart review, 68 children with closed head injury were cared for using a standardized protocol and the intravenous infusion of 3% HTS in quantities designed to drive the serum sodium to levels that would reduce the ICP to less than 20 mmHg. Of the patients in who HTS was used, only 3 patients (4%) died of uncontrolled ICP. Of note, there were no adverse effects of super-physiologic hyperosmolarity such as renal failure, pulmonary edema, or central pontine demyelination.

The use of 3% hypertonic saline in traumatic brain injury has recently been investigated by many centers and is now included as first tier therapy in the management of decreasing intracranial pressure (ICP) secondary to severe traumatic brain injury in the pediatric population. Its mechanism in ICP reduction lies in its favorable rheologic and osmolar gradient effects; it concomitantly augments intravascular volume and increase mean arterial pressure to provide optimum cerebral perfusion pressure. Again, multiple studies have shown the direct effect of HTS in lowering ICP along with its safety in a pediatric population. HTS has also been used to treat altered mental status in diabetic ketoacidosis.

Many of the symptoms associated with mild traumatic brain injury may be due to mild elevations in intracranial pressure, minimal cerebral edema, and/or vasospasm of the cerebral vasculature. Hypertonic saline may be instrumental in improving the symptoms of concussion by addressing the commonly suspected mechanisms responsible for these symptoms. By reducing mild cerebral edema and/or improving cerebral perfusion pressure, cerebral vasospasm may be overcome by reversal or by improved flow; thus, 3% HTS may allow favorable treatment of postconcussive symptoms.


Recruitment information / eligibility

Status Completed
Enrollment 8
Est. completion date July 2007
Est. primary completion date December 2005
Accepts healthy volunteers No
Gender Both
Age group 6 Years to 17 Years
Eligibility Inclusion Criteria:

- Greater than or equal to 6 years of age

- Admitted for observation of closed head injury

- GCS greater than or equal to 13

- Presence of headache

- CT scan showing no brain injury or only a small contusion (an area of low attenuation less than 10 mm or a punctuate area of high attenuation with surrounding edema less than 5mm). CT evidence of high or mixed attenuation would be consistent with a hemorrhagic lesion and therefore not qualify to participate in the study. Evidence of skull fractures and cephalohematomas on CT would not exclude the patient from the study.

Exclusion Criteria:

- Age less than 6

- GCS less than 13

- Radiographic evidence of extra-axial blood or subarachnoid blood

- Possible or witnessed posttraumatic seizure

- Developmental delay/ mental retardation

- Underlying cardiac or renal pathology

- Suspected and/or documented use of alcohol and/or illicit substances

- Medication history which includes administration of acetaminophen within 4 hours prior to enrollment or chronic anticoagulant use (ie: Coumadin, Aspirin

- Associated injuries requiring the use of narcotics for analgesia (ie: long bone injuries, deep laceration repair)

- Intubation

- Non-English speaking

- No parental consent

Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment


Intervention

Drug:
3% Hypertonic saline

Placebo
Normal saline

Locations

Country Name City State
United States Children's Hospital San Diego San Diego California

Sponsors (1)

Lead Sponsor Collaborator
Rady Children's Hospital, San Diego

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Improvement in headache.
Secondary Improvement in other clinical symptoms of concussion (decrease level of GCS, nausea, vomiting, inability to recall events, repetitive questioning, and disorientation to person, place, and time).
See also
  Status Clinical Trial Phase
Completed NCT02299128 - Effectiveness of Early Physical Therapy Intervention for Patients With Dizziness After a Sports-Related Concussion N/A
Completed NCT02383472 - LED Therapy for the Treatment of Concussive Brain Injury N/A
Recruiting NCT06112093 - Repetitive Transcranial Magnetic Stimulation for Post-concussion Headaches N/A
Terminated NCT02597504 - Development of a Neurocognitive Screening Test N/A
Completed NCT00409058 - Teen Online Problem Solving (TOPS) - An Online Intervention Following TBI N/A
Completed NCT00295074 - The Effect of Mild Traumatic Brain Injury on Recovery From Injury N/A
Completed NCT00483444 - Telephone Follow-Up on Outcome After Mild Traumatic Brain Injury N/A
Completed NCT03319966 - Eyetracking and Neurovision Rehabilitation of Oculomotor Dysfunction in Mild Traumatic Brain Injury
Completed NCT04681742 - Feasibility Testing of Cognitive Strategy Training in Post-Concussive Syndrome N/A
Completed NCT03759223 - Enhanced Problem-Solving Training N/A
Completed NCT00857207 - Metacognitive Training to Enhance Strategy Use in Blast-Related TBI N/A
Not yet recruiting NCT06131242 - The s100β Levels in Patients With Mild Brain Injury.
Completed NCT02368366 - Comparative Effectiveness of Family Problem-Solving Therapy (F-PST) for Adolescent TBI N/A
Completed NCT02858544 - Concussion in Motor Vehicle Accidents: The Concussion Identification Index N/A
Recruiting NCT05837676 - Problem-Solving Training for Concussion N/A
Recruiting NCT06015451 - Exercise in Postconcussion Symptoms and Posttraumatic Headache N/A
Completed NCT00724607 - Brain Injury Outcomes (BIO) Study
Completed NCT02455037 - Evaluation of a Neck Strengthening Program to Reduce the Risk of Sport-related Concussion N/A
Unknown status NCT02699359 - Indirect Intracranial Pressure Measurement in Patients With Suspected or Documented Concussion N/A
Completed NCT02486003 - Testing mTBI in Athletes N/A