Clinical Trials Logo

Clinical Trial Summary

In China, the number of children's medical services is still far behind the growing demand for children's health care. The phenomenon of children's parents queuing overnight for registration is no longer surprising. This is because of the increase in the number of children and the shortage of pediatric talents. In the department of pediatrics, the number of patients increases year by year, but pediatrician is short of supply from beginning to end. In addition to outpatient service, pediatricians in large hospitals also perform operations, scientific research and other tasks. As a result, many doctors have to give up their vacations, which makes them miserable and reduces their enthusiasm for work. The long queuing time also reduced the satisfaction of patients, resulting in the intensification of the conflict between pediatric doctors and patients. This research project aims to create a human-computer integrated system and develop a new diagnosis process embedded with artificial intelligence (AI). The function of AI system mainly includes 3 aspects. (1) The patient uses a mobile phone application embedded with AI that allows him to have check-up before see a doctor. The program will ask the patient a number of questions. Then, based on the patient's answers, AI will recommend a series of examination, all of which would be reviewed by the physician beforehand. After the patient pays for it, he could go straight to do the examination. So, next he could go to the doctor with the examination report which saves the patient the trouble of queuing. (2) At the same time, the AI system could also automate the medical history. The patient would complete self-help history collection in the spare time. The AI system collects the medical history and automatically import it to the doctor's computer. Doctors' main job is to modify the medical history generated by AI. To some extent, it lightens the burden of doctors. (3) During the visit, the AI system automatically captures the information in the patient's electronic medical record and generates the possible diagnosis. This process is of great help to junior doctors, and may serve as a cue. In short, this study is helpful to effectively reduce the waiting time of patients and greatly increase their medical experience. While reducing the work intensity of doctors, the outpatient procedure of our hospital has been effectively optimized to alleviate the shortage of pediatricians to some extent.


Clinical Trial Description

Relying on mobile application and computer software, it would achieve: 1. Intelligent guidance and matching the department; 2. Intelligent medical history collection, and AI medical record generation; 3. Automatically recommend examination items; 4. Assist in clinical diagnosis and make intelligent diagnosis suggestion. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04186104
Study type Interventional
Source Shanghai Jiao Tong University School of Medicine
Contact
Status Completed
Phase N/A
Start date March 21, 2020
Completion date June 29, 2021

See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence