ARDS Clinical Trial
Official title:
Comparison of Guiding Sedation Level by Respiratory Effort Versus Usual Care in Mechanically Ventilated Patients: A Randomized Controlled Trial (EFFORT-GUIDE Trial 2)
The objective of this research is to utilize respiratory effort parameters as a tool to assist in adjusting sedative drug levels for patients undergoing mechanical ventilation in the intensive care unit, in comparison to the conventional usual care approach.
Status | Recruiting |
Enrollment | 156 |
Est. completion date | October 31, 2025 |
Est. primary completion date | October 31, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 75 Years |
Eligibility | Inclusion Criteria: 1. Participants must be aged between 18-75 years. 2. Admitted to the critical care and semi-critical care units (ICUs) of the Department of Internal Medicine, Ramathibodi Hospital (ICUs 9IC, 8IK, and 7NW). 3. Patients with acute respiratory failure admitted to the hospital with the following conditions within the first 48 hours: - PaO2/FiO2 greater than 150 or - PaO2 less than 60 mm Hg or - SaO2 less than 90 mm Hg or - Work of breathing more than 25 breaths per minute or requiring respiratory muscle assistance 4. Permission obtained from the attending physician. 5. Research participants or their direct relatives must sign informed consent. 6. The research can commence and data can be recorded within 48 hours after the patient has received treatment with the mechanical ventilator. 7. Indicate for receiving sedative drugs during an invasive mechanical ventilator include situations such as when the patient experiences pain or agitation after the placement of the breathing assistance device or when there is patient-ventilator asynchrony. Exclusion Criteria: 1. Admitted to the hospital or had a history of hospital admission within a month before recruitment. 2. History of cardiovascular or cerebrovascular events within the last 12 months. 3. Allergic to sedative drugs used in the study. 4. Pregnant. 5. Terminal-stage cancer patient, terminal illness-stage of disease who desire palliative care. 6. Active neurological or muscular disorders affecting stability. 7. Brain coma, brain death, or status epilepticus. 8. Severe mental health conditions, including active depression with psychotic features, bipolar disorder, or schizophrenia. 9. Uncontrolled thyroid conditions within a month before recruitment. 10. Uncorrectable patients with severe hypoxemia (P/F ratio less than 150). 11. Patients receiving neuromuscular blocking agents. |
Country | Name | City | State |
---|---|---|---|
Thailand | Critical care medicine Ramathibodi hospital, 270 Rama 6 Rd. Phayatai | Ratchathewi | Bangkok |
Lead Sponsor | Collaborator |
---|---|
Ramathibodi Hospital |
Thailand,
Barach AL, Eckman M. THE EFFECTS OF INHALATION OF HELIUM MIXED WITH OXYGEN ON THE MECHANICS OF RESPIRATION. J Clin Invest. 1936 Jan;15(1):47-61. doi: 10.1172/JCI100758. No abstract available. — View Citation
Beduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, Grelon F, Runge I, Nicolas Terzi, Grange S, Barberet G, Guitard PG, Frat JP, Constan A, Chretien JM, Mancebo J, Mercat A, Richard JM, Brochard L; WIND (Weaning according to a New Definitio — View Citation
Bertoni M, Spadaro S, Goligher EC. Monitoring Patient Respiratory Effort During Mechanical Ventilation: Lung and Diaphragm-Protective Ventilation. Crit Care. 2020 Mar 24;24(1):106. doi: 10.1186/s13054-020-2777-y. — View Citation
Bertoni M, Telias I, Urner M, Long M, Del Sorbo L, Fan E, Sinderby C, Beck J, Liu L, Qiu H, Wong J, Slutsky AS, Ferguson ND, Brochard LJ, Goligher EC. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary dri — View Citation
Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988 May;137(5):1159-64. doi: 10.1164/ajrccm/137.5.11 — View Citation
Dzierba AL, Khalil AM, Derry KL, Madahar P, Beitler JR. Discordance Between Respiratory Drive and Sedation Depth in Critically Ill Patients Receiving Mechanical Ventilation. Crit Care Med. 2021 Dec 1;49(12):2090-2101. doi: 10.1097/CCM.0000000000005113. — View Citation
Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A, Murray A, Brace D, Urrea C, Reid WD, Tomlinson G, Slutsky AS, Kavanagh BP, Brochard LJ, Ferguson ND. Mechanical Ventilation-induced Diaphragm Atro — View Citation
Karamchandani K, Rewari V, Trikha A, Batra RK. Bispectral index correlates well with Richmond agitation sedation scale in mechanically ventilated critically ill patients. J Anesth. 2010 Jun;24(3):394-8. doi: 10.1007/s00540-010-0915-4. Epub 2010 Mar 12. — View Citation
Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15(1):8-14. doi: 10.1007/BF00255628. — View Citation
Moore RL, Binger CA. THE RESPONSE TO RESPIRATORY RESISTANCE : A COMPARISON OF THE EFFECTS PRODUCED BY PARTIAL OBSTRUCTION IN THE INSPIRATORY AND EXPIRATORY PHASES OF RESPIRATION. J Exp Med. 1927 May 31;45(6):1065-80. doi: 10.1084/jem.45.6.1065. — View Citation
Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1734-9. doi: 10.1164/ajrccm.164.9.2011150 — View Citation
Scott A, Wang X, Road JD, Reid WD. Increased injury and intramuscular collagen of the diaphragm in COPD: autopsy observations. Eur Respir J. 2006 Jan;27(1):51-9. doi: 10.1183/09031936.06.00143004. — View Citation
Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002 Nov 15;166(10):1338-44. doi: 10. — View Citation
Taran Z, Namadian M, Faghihzadeh S, Naghibi T. The Effect of Sedation Protocol Using Richmond Agitation-Sedation Scale (RASS) on Some Clinical Outcomes of Mechanically Ventilated Patients in Intensive Care Units: a Randomized Clinical Trial. J Caring Sci. — View Citation
Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa EL, Tucci MR, Zin WA, Kavanagh BP, Amato MB. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013 Dec 15;188(12):1420-7. doi: 10.1164/rccm — View Citation
Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013 Feb;41(2):536-45. doi: 10.1097/CCM.0b013e3182711972. — View Citation
* Note: There are 16 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | 28 days ventilator-free day | To compare the number of ventilator-free days at 28 days between the method of measuring respiratory effort using the Dynamic Transpulmonary Pressure Swing (Predicted ?PL) and P0.1, as opposed to usual care, for adjusting sedative drug dosages in patients with acute respiratory failure requiring mechanical ventilation. | After intubated patients were recruited until successful extubation or dead/failed extubation with in 28 days. | |
Secondary | 28-day mortality rate | To compare 28-day mortality rate in patients adjusting sedative drug dosages using the Dynamic Transpulmonary Pressure Swing (Predicted ?PL) and P0.1 methods compared to usual care. | After intubated patients were recruited until alive or dead with in 28 days. | |
Secondary | 48 hours the pulmonary mechanics change | To investigate the pulmonary mechanics at 48 hours after sedative drug adjustment using the Dynamic Transpulmonary Pressure Swing (Predicted ?PL) and P0.1 methods compared to usual care. | After intubated patients were recruited until 48 hours | |
Secondary | The proper respiratory effort level during 48 hours | To determine an appropriate level of respiratory effort and reduce excessive and inadequate effort factors by administering suitable sedative drugs to patients, minimizing lung injury from various causes, with the goal of facilitating the shortest possible duration of mechanical ventilation. | After intubated patients were recruited until 48 hours | |
Secondary | The sedative dosage during 48 hours | To compare the amount of sedative drugs administered to patients within 48 hours after intubation in the intervention group, adjusting drug dosages using the Dynamic Transpulmonary Pressure Swing (Predicted ?PL) and P0.1 guidance, and the control group, adjusting drug dosages using Usual care guidance. The results will be presented separately for each type of drug, including Propofol infusion rate (mcg/kg/min), midazolam-equivalent infusion rate (mg/hc), fentanyl-equivalent infusion rate (mcg/hd), dexmedetomidine infusion rate (mcg/kg/h). | After intubated patients were recruited until 48 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04435613 -
Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients
|
N/A | |
Enrolling by invitation |
NCT05020210 -
Effect of Early Treatment With Sivelestat Sodium in ARDS Patients
|
||
Completed |
NCT04468971 -
REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia
|
Phase 1 | |
Completed |
NCT04505592 -
Tenecteplase in Patients With COVID-19
|
Phase 2 | |
Completed |
NCT04493242 -
Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS
|
Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Completed |
NCT02265198 -
Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT01949272 -
Optimization of PEEP for Alveolar Recruitment in ARDS
|
N/A | |
Not yet recruiting |
NCT01668368 -
Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance
|
N/A | |
Completed |
NCT01881061 -
Lung Sonography in Patients With Acute Respiratory Distress Syndrome in Intensive Care Unit
|
N/A | |
Completed |
NCT00808691 -
Microcirculation and Oxidative Stress in Critical Ill Patients in Surgical Intensive Care Unit
|
N/A | |
Completed |
NCT05035589 -
The Effect of Tocilizumab on Procalcitonin and Other Biochemical and Clinical Markers in the Setting of COVID-19 Pneumonia
|
||
Recruiting |
NCT04764032 -
Right Ventricular Dysfunction in Ventilated Patients With COVID-19
|
||
Completed |
NCT04556513 -
Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status
|
||
Recruiting |
NCT06036056 -
NMR Based Metabolomics Kinetics in ARDS Patients
|
||
Recruiting |
NCT04503876 -
Effects of End-expiratory Positive Pressure Optimization in Intubated Patients With Healthy Lung or Acute Respiratory Distress Syndrome
|
N/A | |
Recruiting |
NCT04643691 -
Losartan and Spironolactone Treatment for ICU Patients With COVID-19 Suffering From ARDS
|
Phase 2 | |
Completed |
NCT04395911 -
Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections
|
N/A | |
Not yet recruiting |
NCT05341687 -
Prognostic Value of Respiratory System Compliance Under VV-ECMO on 180-day Mortality in COVID-19 ARDS.
|
||
Recruiting |
NCT05056090 -
Effect of Prone Positioning on Mortality in Patients With Mild to Moderate Acute Respiratory Distress Syndrome.
|
N/A |