ARDS Clinical Trial
Official title:
The Effect of Prone Positioning on Oxygenation and Respiratory Mechanics in Patients With COVID-19 Pneumonia
Prone positioning improves oxygenation in patients with ARDS (1-3). Patients with severe ARDS due to COVID-19 are candidates for prone position. It should be started within 36-48 h and maintained 1, 3). Prone ventilationARDS based on a randomized trial that showed a mortality benefit (PROSEVA) (3). The improvement of oxygenation occurs by making ventilation more homogeneous, limiting ventilator-associated lung injury (4-6). Prone positioning was as effective in improving oxygenation, static respiratory system compliance (Crs) (7). Higher PEEP should be applied when there is a high recruitability potential of the lung. This study aimed to investigate whether prone positioning changes the recruitability position of the lung.in COVID-ARDS.
Status | Recruiting |
Enrollment | 50 |
Est. completion date | April 13, 2022 |
Est. primary completion date | February 1, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Adult patients with laboratory-confirmed COVID-19 admitted to the ICU - The patients receive invasive mechanical ventilation and meet the criteria for ARDS (Berlin definition) (8), with under continuous infusion of sedatives, Exclusion Criteria: - Pregnancy - Pneumothorax and or chest tube - Chronic obstructive lung disease - interstitial lung disease - intraabdominal hypertension - increase in intracranial blood pressure - Haemodynamic unstability requiring vasopressors |
Country | Name | City | State |
---|---|---|---|
Turkey | Kazim Rollas | Izmir |
Lead Sponsor | Collaborator |
---|---|
Tepecik Training and Research Hospital |
Turkey,
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation
Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M, Ferguson ND, Fan E, Richard JM, Brochard L. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med. 2020 Jan 15;201(2):178-187. doi: 10.1164/rccm.201902-0334OC. — View Citation
Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, Fan E, Brochard L. Airway Closure in Acute Respiratory Distress Syndrome: An Underestimated and Misinterpreted Phenomenon. Am J Respir Crit Care Med. 2018 Jan 1;197(1):132-136. doi: 10.1164/rccm.201702-0388LE. — View Citation
Cornejo RA, Díaz JC, Tobar EA, Bruhn AR, Ramos CA, González RA, Repetto CA, Romero CM, Gálvez LR, Llanos O, Arellano DH, Neira WR, Díaz GA, Zamorano AJ, Pereira GL. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013 Aug 15;188(4):440-8. doi: 10.1164/rccm.201207-1279OC. — View Citation
Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM. Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis. 1977 Apr;115(4):559-66. — View Citation
Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004 Nov 17;292(19):2379-87. — View Citation
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013 Jun 6;368(23):2159-68. doi: 10.1056/NEJMoa1214103. Epub 2013 May 20. — View Citation
Lai-Fook SJ, Rodarte JR. Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol (1985). 1991 Mar;70(3):967-78. Review. — View Citation
Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodríguez F, Garro P, Ricart P, Vallverdú I, Gich I, Castaño J, Saura P, Domínguez G, Bonet A, Albert RK. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Jun 1;173(11):1233-9. Epub 2006 Mar 23. — View Citation
Park J, Lee HY, Lee J, Lee SM. Effect of prone positioning on oxygenation and static respiratory system compliance in COVID-19 ARDS vs. non-COVID ARDS. Respir Res. 2021 Aug 6;22(1):220. doi: 10.1186/s12931-021-01819-4. Review. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Oxygenation | PaO2/FiO2 | intubation + 48 hours | |
Secondary | Static compliance | Tidal volume divided driving pressure | intubation + 48 hours | |
Secondary | Recruitability | recruitment to inflation ratio | intubation + 48 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04435613 -
Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients
|
N/A | |
Enrolling by invitation |
NCT05020210 -
Effect of Early Treatment With Sivelestat Sodium in ARDS Patients
|
||
Completed |
NCT04468971 -
REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia
|
Phase 1 | |
Completed |
NCT04505592 -
Tenecteplase in Patients With COVID-19
|
Phase 2 | |
Completed |
NCT04493242 -
Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS
|
Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Completed |
NCT02265198 -
Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT01949272 -
Optimization of PEEP for Alveolar Recruitment in ARDS
|
N/A | |
Not yet recruiting |
NCT01668368 -
Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance
|
N/A | |
Completed |
NCT01881061 -
Lung Sonography in Patients With Acute Respiratory Distress Syndrome in Intensive Care Unit
|
N/A | |
Completed |
NCT00808691 -
Microcirculation and Oxidative Stress in Critical Ill Patients in Surgical Intensive Care Unit
|
N/A | |
Completed |
NCT05035589 -
The Effect of Tocilizumab on Procalcitonin and Other Biochemical and Clinical Markers in the Setting of COVID-19 Pneumonia
|
||
Recruiting |
NCT04764032 -
Right Ventricular Dysfunction in Ventilated Patients With COVID-19
|
||
Completed |
NCT04556513 -
Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status
|
||
Recruiting |
NCT06036056 -
NMR Based Metabolomics Kinetics in ARDS Patients
|
||
Recruiting |
NCT04503876 -
Effects of End-expiratory Positive Pressure Optimization in Intubated Patients With Healthy Lung or Acute Respiratory Distress Syndrome
|
N/A | |
Recruiting |
NCT04643691 -
Losartan and Spironolactone Treatment for ICU Patients With COVID-19 Suffering From ARDS
|
Phase 2 | |
Completed |
NCT04395911 -
Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections
|
N/A | |
Not yet recruiting |
NCT05341687 -
Prognostic Value of Respiratory System Compliance Under VV-ECMO on 180-day Mortality in COVID-19 ARDS.
|
||
Recruiting |
NCT05056090 -
Effect of Prone Positioning on Mortality in Patients With Mild to Moderate Acute Respiratory Distress Syndrome.
|
N/A |