Clinical Trials Logo

Clinical Trial Summary

This observational study aims to investigate healthy cortical and subcortical neural processes involved in generating intrinsic alpha oscillations during induction of general anesthesia with propofol. To do this, the investigators have designed a simultaneous electroencephalogram (EEG)- MRI (functional MRI and Spectroscopy) experiment with a visual stimulation paradigm that addresses the subject's specific intrinsic alpha rhythm during anesthesia and wakefulness. The main question it aims to answer is: could the investigators address the alpha oscillation system of the healthy brain with external stimulation during anesthesia? This experiment could lead to a better understanding of the mechanisms underlying the generation of alpha oscillations. It could open new doors to diagnostic and treatment options for diseases where alpha oscillations, such as post-operative delirium, seem to be affected.


Clinical Trial Description

This study aims to investigate healthy cortical and subcortical neural processes during induction of general anesthesia with propofol, which is clinically relevant for postoperative delirium, a common cognitive disorder, after surgical intervention in the elderly. Intrinsic neural oscillations within the alpha frequency band (~8-13Hz) can be measured with the EEG, showing the highest power (i.e., amplitude) in occipital electrodes during eyes-closed wakefulness resting state. Under general anesthesia, especially with propofol, the power of these oscillations decreases in the occipital cortex but increases in the frontal cortex. Although neither the exact mechanisms underlying the generation of alpha oscillations nor their dynamics under anesthesia are entirely understood, it has been suggested that the thalamus might be a key player modulating the shift of alpha-band power throughout the brain. Post-operative delirium (POD) is a complication after a surgical intervention characterized by an acute impairment of consciousness, attention, and arousal with a fluctuating evolution. This is prevalent mainly in elderly patients, especially in those with pre-existing neurocognitive disorders, neurodegenerative disease, and those undergoing complex or emergency procedures. Despite the functional and economic burden this disorder places on the patient and the health system, e.g., it increases hospital stay and risk of mortality, treatment options and risk management strategies are still limited. Several of our previous studies and those from other groups have highlighted the link between alpha oscillations and clinical outcomes related to POD. For instance, low frontal alpha power - both during maintenance and emergence from general anesthesia - is associated with a higher risk of POD. Low frontal alpha power is also associated with pre-operative neurocognitive impairment, a well-described risk factor for POD. The biochemical nature of this association is still unknown; the role of the cholinergic system as a mediator has been suggested. Therefore, a better understanding of the mechanisms underlying the generation of alpha oscillations and their dynamics under general anesthesia could open new doors to diagnostic and treatment options for POD. Based on our past EEG-fMRI experiments in healthy subjects applying visual stimulation at the alpha frequency, the investigators have shown that (i) visual stimulation using a rhythmic flickering light at a specific frequency evokes a reliable response in the occipital brain, which can be measured with EEG and functional resonance magnetic imaging (fMRI), (ii) the response to this stimulation can be evaluated via evoked potential/power/coherence analyses (EEG) or functional connectivity analyses (fMRI), and (iii) visual flicker stimulation at/near to a subject's intrinsic alpha frequency, known as the 'individual alpha frequency' (IAF), generates a response within brain areas beyond the occipital cortex, such as frontal and parietal regions and most importantly, the thalamus, suggesting an interaction with - and a method to assess - intrinsic alpha oscillations. The investigators propose a simultaneous EEG-fMRI study in which young, healthy participants, anesthetized with propofol, are presented with a visual flicker stimulation paradigm at/around the participant's IAF. Our experimental design includes recordings before the participant is anesthetized (wakefulness pre-anesthesia) and during three different anesthesia concentrations (low, mid, and deep). Functional magnetic resonance spectroscopy will be acquired during resting state throughout all states. A wakefulness post-anesthesia recording in resting state without stimulation is also planned. This approach has several advantages. For instance, the simultaneous acquisition makes it possible to correlate the dynamics of alpha oscillations measured by EEG while having access to a whole-brain resolution via fMRI, including subcortical areas like the thalamus. This is relevant to understanding the interaction between cortical and subcortical neural processes generating alpha oscillations. Furthermore, it exploits the fact that our modality of stimulation at the IAF enhances intrinsic alpha processes, which can potentially become a treatment to reduce the risk of POD under anesthesia. Furthermore, by acquiring functional spectroscopy data, the investigators can detect biochemical changes in the brain during each state. Finally, our experimental design enables, first, a chronologic follow-up of alpha dynamics during the induction of propofol anesthesia, and second, by acquiring data after the intervention, investigators will have an immediate control to contrast before and after anesthesia. For our participant's safety, propofol anesthesia will be titrated until deep concentrations without eliciting a burst suppression state, avoiding intubation and artificial respiration support. This study represents an essential step towards understanding alpha oscillatory processes in the awake and anesthetized brain relevant to the future development of potential preventative/treatment options for POD. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06179719
Study type Interventional
Source Technical University of Munich
Contact
Status Recruiting
Phase N/A
Start date September 10, 2023
Completion date September 10, 2026

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04580030 - Tricuapid Annular Plane Sistolic Excursion Before General Anesthesia Can Predict Hypotension After Induction
Active, not recruiting NCT04279054 - Decreased Neuraxial Morphine After Cesarean Delivery Early Phase 1
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Recruiting NCT04099693 - A Prospective Randomized Study of General Anesthesia Versus Anesthetist Administered Sedation for ERCP
Terminated NCT02481999 - Pre- and Postoperative EEG-Monitoring for Children Aged From 0,5 to 8 Years
Completed NCT04235894 - An Observer Rating Scale of Facial Expression Can Predict Dreaming in Propofol Anesthesia
Recruiting NCT05525104 - The Effect of DSA on Recovery of Anaesthesia in Children (Het Effect Van DSA op Het Herstel na Anesthesie Bij Kinderen). N/A
Recruiting NCT05024084 - Desflurane and Sevoflurane Minimal Flow Anesthesia on Recovery and Anesthetic Depth Phase 4
Completed NCT04204785 - Noise in the OR at Induction: Patient and Anesthesiologists Perceptions N/A
Completed NCT03277872 - NoL, HR and MABP Responses to Tracheal Intubation Performed With MAC Blade Versus Glidescope N/A
Terminated NCT03940651 - Cardiac and Renal Biomarkers in Arthroplasty Surgery Phase 4
Terminated NCT02529696 - Measuring Sedation in the Intensive Care Unit Using Wireless Accelerometers
Completed NCT05346588 - THRIVE Feasibility Trial Phase 3
Terminated NCT03704285 - Development of pk/pd Model of Propofol in Patients With Severe Burns
Recruiting NCT05259787 - EP Intravenous Anesthesia in Hysteroscopy Phase 4
Completed NCT02894996 - Does the Response to a Mini-fluid Challenge of 3ml/kg in 2 Minutes Predict Fluid Responsiveness for Pediatric Patient? N/A
Completed NCT05386082 - Anesthesia Core Quality Metrics Consensus Delphi Study
Terminated NCT03567928 - Laryngeal Mask in Upper Gastrointestinal Procedures N/A
Recruiting NCT06074471 - Motor Sparing Supraclavicular Block N/A
Completed NCT04163848 - CARbon Impact of aNesthesic Gas