Anesthesia Clinical Trial
Official title:
Arousal Pathways and Emergence From Sedation
Emergence from sedation involves an increase in both the level of consciousness and arousal.
Some insight to the neural core of consciousness was gained in the recent past. Our research
objective is to characterize for the first time the spatiotemporal mobilization of the
ascending reticular activating system during emergence from sedation; stated otherwise - to
capture the neural core of arousal.
To achieve this objective we plan to utilize the advanced imaging modality of EEG-fMRI. In
short, volunteers will be placed in the MRI. Following baseline recordings they will be
sedated with a continuous drip of propofol, titrated to deep sedation. Once in that sedation
level, propofol administration will cease until emerging to an awake-calm/light sedation.
Continuous EEG recordings and fMRI scans will be taken, both task specific (auditory
oddball) and resting-fMRI. Analyses will focus (but will not be restricted to) on
constituents of the ascending reticular activating system.
The expected advances of this proposal are:
1. Emergence from sedation (and anesthesia) is one of the critical stages and least
elucidated area in the practice of anesthesia. Delayed awakening of varying degree is
not uncommon after anesthesia and may have a number of different causes, individual or
combined, which may be both drug or non-drug related, thus causing a diagnostic
dilemma. Eventually - better insight into this subject will lead to better clinical
practice and better understanding why patients emerge in such a diverse and sometimes
unexpected manner.
2. Knowledge of the internal structure underlying arousal from anesthesia will help
develop / upgrade brain monitors that could tell the anesthesiologist the patient's
level of consciousness and prediction of arousal.
3. A detailed reproducible mapping of the arousal process may serve as the core of a drug
screening platform for drugs that may expedite patient arousal.
4. Elucidation of the arousal paradigm from sedation will enhance our knowledge of
physiological sleep.
Research hypothesis
Return of consciousness is a complex phenomenon comprising of interplay between the cortex
and deeper brain structures. We hypothesize that the activation signature is conserved and
similar between subjects. Furthermore, we hypothesize that inter-subject variability will
arise mainly in the time domain, as evident from the clinical observation of variable time
to emergence in different patients.
Status | Not yet recruiting |
Enrollment | 20 |
Est. completion date | December 2016 |
Est. primary completion date | December 2015 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | Male |
Age group | 20 Years to 40 Years |
Eligibility |
Inclusion Criteria: - Healthy males (ASA scale 1-2), volunteers only Exclusion Criteria: - Use of chronic medications or illicit drugs - Metallic implants - Previous brain injury - General anaesthesia up to a week earlier to research examination - Known drug sensitivity to Propofol, soybean oil or peanuts |
Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Basic Science
Country | Name | City | State |
---|---|---|---|
Israel | Whol Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center | Tel Aviv | |
Israel | Division of Anesthesia, Pain and Critical Care, Tel-Aviv Sourasky Medical Center | Tel-Aviv |
Lead Sponsor | Collaborator |
---|---|
Tel-Aviv Sourasky Medical Center |
Israel,
Abraham E, Hendler T, Shapira-Lichter I, Kanat-Maymon Y, Zagoory-Sharon O, Feldman R. Father's brain is sensitive to childcare experiences. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9792-7. doi: 10.1073/pnas.1402569111. Epub 2014 May 27. — View Citation
Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008 Nov 7;322(5903):876-80. doi: 10.1126/science.1149213. Review. — View Citation
Baumann CR, Bassetti CL. Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol. 2005 Oct;4(10):673-82. Review. — View Citation
Ben Bashat D, Kronfeld-Duenias V, Zachor DA, Ekstein PM, Hendler T, Tarrasch R, Even A, Levy Y, Ben Sira L. Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage. 2007 Aug 1;37(1):40-7. Epub 2007 May 18. — View Citation
Breshears JD, Roland JL, Sharma M, Gaona CM, Freudenburg ZV, Tempelhoff R, Avidan MS, Leuthardt EC. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21170-5. doi: 10.1073/pnas.1011949107. Epub 2010 Nov 15. — View Citation
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010 Dec 30;363(27):2638-50. doi: 10.1056/NEJMra0808281. Review. — View Citation
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci. 2011;34:601-28. doi: 10.1146/annurev-neuro-060909-153200. Review. — View Citation
Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008 May;9(5):370-86. doi: 10.1038/nrn2372. Review. — View Citation
Garcia-Rill E, Kezunovic N, Hyde J, Simon C, Beck P, Urbano FJ. Coherence and frequency in the reticular activating system (RAS). Sleep Med Rev. 2013 Jun;17(3):227-38. doi: 10.1016/j.smrv.2012.06.002. Epub 2012 Oct 6. Review. — View Citation
Hwang E, Kim S, Han K, Choi JH. Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness. PLoS One. 2012;7(12):e50580. doi: 10.1371/journal.pone.0050580. Epub 2012 Dec 7. — View Citation
Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1309-14. doi: 10.1073/pnas.0707146105. Epub 2008 Jan 14. — View Citation
Långsjö JW, Alkire MT, Kaskinoro K, Hayama H, Maksimow A, Kaisti KK, Aalto S, Aantaa R, Jääskeläinen SK, Revonsuo A, Scheinin H. Returning from oblivion: imaging the neural core of consciousness. J Neurosci. 2012 Apr 4;32(14):4935-43. doi: 10.1523/JNEUROSCI.4962-11.2012. — View Citation
Lee U, Mashour GA, Kim S, Noh GJ, Choi BM. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn. 2009 Mar;18(1):56-64. doi: 10.1016/j.concog.2008.10.005. Epub 2008 Dec 2. — View Citation
Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991 Jul;67(1):41-8. — View Citation
Meir-Hasson Y, Kinreich S, Podlipsky I, Hendler T, Intrator N. An EEG Finger-Print of fMRI deep regional activation. Neuroimage. 2014 Nov 15;102 Pt 1:128-41. doi: 10.1016/j.neuroimage.2013.11.004. Epub 2013 Nov 15. Review. — View Citation
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949 Nov;1(4):455-73. — View Citation
Mukamel EA, Pirondini E, Babadi B, Wong KF, Pierce ET, Harrell PG, Walsh JL, Salazar-Gomez AF, Cash SS, Eskandar EN, Weiner VS, Brown EN, Purdon PL. A transition in brain state during propofol-induced unconsciousness. J Neurosci. 2014 Jan 15;34(3):839-45. doi: 10.1523/JNEUROSCI.5813-12.2014. Erratum in: J Neurosci. 2015 Jun 3;35(22):8684-5. — View Citation
Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51. doi: 10.1073/pnas.1221180110. Epub 2013 Mar 4. — View Citation
Ramsay MA, Savege TM, Simpson BR, Goodwin R. Controlled sedation with alphaxalone-alphadolone. Br Med J. 1974 Jun 22;2(5920):656-9. — View Citation
Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001 Dec;24(12):726-31. Review. — View Citation
Schmidt C, Collette F, Leclercq Y, Sterpenich V, Vandewalle G, Berthomier P, Berthomier C, Phillips C, Tinguely G, Darsaud A, Gais S, Schabus M, Desseilles M, Dang-Vu TT, Salmon E, Balteau E, Degueldre C, Luxen A, Maquet P, Cajochen C, Peigneux P. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science. 2009 Apr 24;324(5926):516-9. doi: 10.1126/science.1167337. — View Citation
Schröter MS, Spoormaker VI, Schorer A, Wohlschläger A, Czisch M, Kochs EF, Zimmer C, Hemmer B, Schneider G, Jordan D, Ilg R. Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. J Neurosci. 2012 Sep 12;32(37):12832-40. doi: 10.1523/JNEUROSCI.6046-11.2012. — View Citation
Solt K. General anesthesia: activating a sleep switch? Curr Biol. 2012 Nov 6;22(21):R918-9. doi: 10.1016/j.cub.2012.09.033. — View Citation
Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci. 2008 Mar;1124:239-61. doi: 10.1196/annals.1440.004. Review. Erratum in: Ann N Y Acad Sci. 2011 Apr;1225:200. — View Citation
Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004 Nov 2;5:42. — View Citation
Weinstein M, Ben-Sira L, Levy Y, Zachor DA, Ben Itzhak E, Artzi M, Tarrasch R, Eksteine PM, Hendler T, Ben Bashat D. Abnormal white matter integrity in young children with autism. Hum Brain Mapp. 2011 Apr;32(4):534-43. doi: 10.1002/hbm.21042. — View Citation
* Note: There are 26 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Characterization of brain network connectivity underlying arousal from anesthesia. | Network connectivity of brain loci involved in arousal pathways will be evaluated for each patient at these time points: baseline, deep sedation and return to conscious state. The identification of these time points will be decided according to the Ramsay clinical scale for sedation depth. A score of 2 for baseline, 5 for deep sedation, and 2-3 for regaining consciousness. An external validation for these time points will derive from the oddball auditory test, in which the brain reaction to a sound in a different pitch is recorded. In the sedated state this reaction is perturbed. | Data collection time frame will not exceed one hour post propofol infusion cessation. | No |
Secondary | Characterization of the internal structure and temporal hierarchy underlying arousal from anesthesia. | At the group level an attempt will be made to discern temporal hierarchy (which of the aforementioned nuclei is the first to regain activity within the network) between the different ROIs (in voxels and normalized to a standarized brain) involved in the arousal pathways. The basal forebrain, laterodorsal tegmental nuclei, pedunculupontine nuclei, the ventral hypothalamus and the thalamus will all be included in the putative connectivity map. | Data collection time frame will not exceed one hour post propofol infusion cessation. | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT04279054 -
Decreased Neuraxial Morphine After Cesarean Delivery
|
Early Phase 1 | |
Active, not recruiting |
NCT04580030 -
Tricuapid Annular Plane Sistolic Excursion Before General Anesthesia Can Predict Hypotension After Induction
|
||
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Recruiting |
NCT04099693 -
A Prospective Randomized Study of General Anesthesia Versus Anesthetist Administered Sedation for ERCP
|
||
Terminated |
NCT02481999 -
Pre- and Postoperative EEG-Monitoring for Children Aged From 0,5 to 8 Years
|
||
Completed |
NCT04235894 -
An Observer Rating Scale of Facial Expression Can Predict Dreaming in Propofol Anesthesia
|
||
Recruiting |
NCT05525104 -
The Effect of DSA on Recovery of Anaesthesia in Children (Het Effect Van DSA op Het Herstel na Anesthesie Bij Kinderen).
|
N/A | |
Recruiting |
NCT05024084 -
Desflurane and Sevoflurane Minimal Flow Anesthesia on Recovery and Anesthetic Depth
|
Phase 4 | |
Completed |
NCT04204785 -
Noise in the OR at Induction: Patient and Anesthesiologists Perceptions
|
N/A | |
Completed |
NCT03277872 -
NoL, HR and MABP Responses to Tracheal Intubation Performed With MAC Blade Versus Glidescope
|
N/A | |
Terminated |
NCT03940651 -
Cardiac and Renal Biomarkers in Arthroplasty Surgery
|
Phase 4 | |
Terminated |
NCT02529696 -
Measuring Sedation in the Intensive Care Unit Using Wireless Accelerometers
|
||
Completed |
NCT05346588 -
THRIVE Feasibility Trial
|
Phase 3 | |
Terminated |
NCT03704285 -
Development of pk/pd Model of Propofol in Patients With Severe Burns
|
||
Recruiting |
NCT05259787 -
EP Intravenous Anesthesia in Hysteroscopy
|
Phase 4 | |
Completed |
NCT02894996 -
Does the Response to a Mini-fluid Challenge of 3ml/kg in 2 Minutes Predict Fluid Responsiveness for Pediatric Patient?
|
N/A | |
Completed |
NCT05386082 -
Anesthesia Core Quality Metrics Consensus Delphi Study
|
||
Terminated |
NCT03567928 -
Laryngeal Mask in Upper Gastrointestinal Procedures
|
N/A | |
Recruiting |
NCT06074471 -
Motor Sparing Supraclavicular Block
|
N/A | |
Completed |
NCT04163848 -
CARbon Impact of aNesthesic Gas
|