Clinical Trials Logo

Adult Anaplastic Astrocytoma clinical trials

View clinical trials related to Adult Anaplastic Astrocytoma.

Filter by:
  • Terminated  
  • Page 1 ·  Next »

NCT ID: NCT02967380 Terminated - Multiple Sclerosis Clinical Trials

Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases

Start date: December 14, 2011
Phase: N/A
Study type: Interventional

This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.

NCT ID: NCT01996527 Terminated - Adult Glioblastoma Clinical Trials

3T MRI Biomarkers of Glioma Treatment Response

Start date: May 2012
Phase: Early Phase 1
Study type: Interventional

This pilot clinical trial studies advanced magnetic resonance imaging (MRI) techniques in measuring treatment response in patients with high-grade glioma. New diagnostic procedures, such as advanced MRI techniques at 3 Tesla, may be more effective than standard MRI in measuring treatment response in patients receiving treatment for high-grade gliomas.

NCT ID: NCT01478321 Terminated - Adult Glioblastoma Clinical Trials

Efficacy of Hypofractionated XRT w/Bev. + Temozolomide for Recurrent Gliomas

Start date: December 14, 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving hypofractionated radiation therapy together with temozolomide and bevacizumab works in treating patients with high-grade glioblastoma multiforme or anaplastic glioma. Specialized radiation therapy, such as hypofractionated radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving hypofractionated radiation therapy together with temozolomide and bevacizumab may kill more tumor cells.

NCT ID: NCT01378481 Terminated - Adult Glioblastoma Clinical Trials

High-Dose Vorinostat and Fractionated Stereotactic Body Radiation Therapy in Treating Patients With Recurrent Glioma

Start date: June 2012
Phase: Phase 1
Study type: Interventional

This study is being done to determine if an investigational cancer treatment called vorinostat combined with fractionated stereotactic radiation therapy (FSRT) is effective in treating recurrent high grade gliomas. The main goal of this research study is to determine the highest dose of vorinostat that can be given to patients with recurrent tumors. The study will also determine the potential side effects and safety of these treatment combinations. Vorinostat is a small molecule inhibitor of histone deacetylase (HDAC). HDAC inhibitors help unravel the deoxyribonucleic acid (DNA) of the cancer cells and make them more susceptible to the treatment with radiation.

NCT ID: NCT01234805 Terminated - Adult Glioblastoma Clinical Trials

Yoga Therapy in Treating Patients With Malignant Brain Tumors

Start date: December 2010
Phase: N/A
Study type: Interventional

This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors

NCT ID: NCT01189240 Terminated - Adult Glioblastoma Clinical Trials

RO4929097and Bevacizumab in Treating Patients With Progressive or Recurrent Malignant Glioma

Start date: December 2010
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and the best dose of RO4929097 to see how well it works when given together with bevacizumab compared to bevacizumab alone in treating patients with progressive or recurrent malignant glioma. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving RO4929097 together with bevacizumab may kill more tumor cells.

NCT ID: NCT01148966 Terminated - Adult Glioblastoma Clinical Trials

Aminolevulinic Acid During Surgery in Treating Patients With Malignant Brain Tumors

Start date: June 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of aminolevulinic acid during surgery in treating patients with malignant brain tumors. Aminolevulinic acid becomes active when it is exposed to a certain kind of light and may help doctors find and remove tumor cells during surgery

NCT ID: NCT01103375 Terminated - Adult Glioblastoma Clinical Trials

Erlotinib Hydrochloride and Isotretinoin in Treating Patients With Recurrent Malignant Glioma

Start date: May 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given with isotretinoin in treating patients with recurrent malignant glioma. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Isotretinoin may help cells that are involved in the body's immune response to work better. Giving erlotinib hydrochloride together with isotretinoin may kill more tumor cells

NCT ID: NCT00430079 Terminated - Adult Glioblastoma Clinical Trials

Use of EF5 to Measure the Oxygen Level in Tumor Cells of Patients Undergoing Surgery or Biopsy for Newly Diagnosed Supratentorial Malignant Glioma

Start date: July 2001
Phase: N/A
Study type: Interventional

This clinical trial is using EF5 to measure the oxygen level in tumor cells of patients undergoing surgery or surgery biopsy for newly diagnosed supratentorial malignant glioma. Diagnostic procedures using the drug EF5 to measure the oxygen level in tumor cells may help in planning cancer treatment

NCT ID: NCT00110032 Terminated - Adult Glioblastoma Clinical Trials

Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

Start date: June 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment