Clinical Trials Logo

Adenocarcinoma, Mucinous clinical trials

View clinical trials related to Adenocarcinoma, Mucinous.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT04739800 Active, not recruiting - Clinical trials for Ovarian Seromucinous Carcinoma

Comparison of Standard of Care Treatment With a Triplet Combination of Targeted Immunotherapeutic Agents

Start date: June 10, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the possible benefits of treatment with different combinations of the drugs durvalumab, olaparib and cediranib vs. the usual treatment in patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back after a period of improvement with platinum therapy (recurrent platinum resistant). Usual treatment is the type of treatment most patients with this condition receive if they are not part of a clinical study. Combination therapies studied in this trial include MEDI4736 (durvalumab) plus olaparib and cediranib, durvalumab and cediranib, or olaparib and cediranib. Monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumors cells to grow and spread. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Cediranib may stop the growth of tumor cells by blocking VEGF (an enzyme). needed for cell growth. Giving different combinations of durvalumab, olaparib and cediranib may work better in increasing the duration of time that the cancer does not progress compared to the usual treatment.

NCT ID: NCT02978625 Active, not recruiting - Clinical trials for Merkel Cell Carcinoma

Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers

Start date: September 27, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.

NCT ID: NCT02834013 Active, not recruiting - Clinical trials for Nasopharyngeal Carcinoma

Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

Start date: January 30, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

NCT ID: NCT02364713 Active, not recruiting - Clinical trials for Recurrent Ovarian Carcinoma

MV-NIS or Investigator's Choice Chemotherapy in Treating Patients With Ovarian, Fallopian, or Peritoneal Cancer

Start date: March 13, 2015
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well oncolytic measles virus encoding thyroidal sodium iodide symporter (MV-NIS) compared to investigator's choice chemotherapy works in treating patients with ovarian, fallopian, or peritoneal cancer. Measles virus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells.

NCT ID: NCT02020707 Active, not recruiting - Clinical trials for Malignant Solid Neoplasm

Nab-Paclitaxel and Bevacizumab in Treating Patients With Unresectable Stage IV Melanoma or Gynecological Cancers

Start date: February 24, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of nab-paclitaxel and bevacizumab in treating patients with stage IV melanoma that cannot be removed by surgery (unresectable), cancer of the cervix, endometrium, ovary, fallopian tube or peritoneal cavity. Drugs used in chemotherapy, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab may stop or slow tumor growth by blocking the growth of new blood vessels necessary for tumor growth. Giving nab paclitaxel and bevacizumab may kill more tumor cells than nab-paclitaxel alone.

NCT ID: NCT02005965 Active, not recruiting - Neoplasms Clinical Trials

Low Rectal Cancer Study (MERCURY II)

MERCURY II
Start date: August 13, 2007
Phase:
Study type: Observational

The MERCURY Study demonstrated the accuracy, feasibility and reproducibility of Magnetic Resonance Imaging (MRI) to stage rectal cancer in a prospective, multidisciplinary, multi-centre study. However, there were differences in patient outcome, dependent upon the position of the tumour in the rectum and its height above the anal verge. Whilst the outcome was excellent for patients who underwent an anterior resection, the outcome, based upon margin involvement and quality of the specimen, was poor for patients who underwent an abdomino-perineal excision for low rectal cancer. It is proposed that accurate MRI staging pre-operatively will allow the correct patients to receive neo-adjuvant chemoradiotherapy (CRT), and also pre-warn the surgeons if the resection margins appear threatened so that the operation can be modified to take this into account. The primary aims of the Low Rectal Cancer Study (MERCURY II) are to assess the rate of CRM positivity rate in low rectal cancer and to assess the difference in global quality of life at two years post surgery in patients according to plane of surgery with or without sphincter preservation.

NCT ID: NCT01995942 Active, not recruiting - Neoplasms Clinical Trials

Molecular, Pathologic and MRI Investigation of the Prognostic and Redictive Importance of Extramural Venous Invasion in Rectal Cancer (MARVEL) Trial

MARVEL
Start date: June 7, 2013
Phase:
Study type: Observational

Extramural venous invasion (EMVI) is the spread of microscopic tumour cells into the veins around the tumour. Rectal cancer treatment has improved greatly over recent years. However, it is important for us to learn as much about the tumours as possible in order to develop newer therapies. Current treatments may benefit from new genetic information relating to the cancer. We hope to identify genetic differences in certain types of rectal cancer which will allow future treatments.

NCT ID: NCT01871571 Active, not recruiting - Clinical trials for Stage IIIB Rectal Cancer

Bevacizumab, Fluorouracil, Leucovorin Calcium, and Oxaliplatin Before Surgery in Treating Patients With Stage II-III Rectal Cancer

Start date: August 2, 2013
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well bevacizumab, fluorouracil, leucovorin calcium, and oxaliplatin before surgery works in treating patients with stage II-III rectal cancer. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as fluorouracil, leucovorin calcium, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with fluorouracil, leucovorin calcium, and oxaliplatin may be an effective treatment for rectal cancer.

NCT ID: NCT01814501 Active, not recruiting - Clinical trials for Recurrent Rectal Cancer

Panitumumab and Chemotherapy in Patients With Advanced Colorectal Cancer After Prior Therapy With Bevacizumab

Start date: February 1, 2013
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well panitumumab and combination chemotherapy works in treating patients with metastatic colorectal cancer previously treated with combination chemotherapy and bevacizumab. Monoclonal antibodies, such as panitumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving panitumumab and combination chemotherapy together may kill more tumor cells

NCT ID: NCT01652196 Active, not recruiting - Clinical trials for Stage IV Colon Cancer

Aflibercept and FOLFOX6 Treatment for Previously Untreated Stage IV Colorectal Cancer

Start date: November 14, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving aflibercept together with combination chemotherapy works in treating patients with previously untreated colon or rectal cancer that is metastatic or locally advanced and cannot be removed by surgery. Aflibercept may stop the growth of colon or rectal cancer by blocking blood flow to the tumor. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with combination chemotherapy may kill more tumor cells