Clinical Trials Logo

Clinical Trial Summary

Mechanical ventilation is a therapeutic method used in order to keep gas exchange adequate to cell metabolism in patients with acute respiratory failure. It is currently proved that, although on one hand the use of this method keeps gas exchange, on the other hand it promotes and supports pulmonary inflammatory processes (VILI). A recent study about the effect of positive end-expiratory pressure (PEEP) on DLCO (diffusing capacity of the lung for carbon monoxide) in patients undergoing invasive mechanical ventilation has proved that patients without any evident pulmonary disease (negative medical history, negative chest clinical examination, normal chest X-ray radiography and normal arterial oxygen tension [PaO2]) after 24 hours of invasive mechanical ventilation show a significant worsening of pulmonary gas exchange properties. The authors have supposed that this worsening may be caused by an early alteration of alveolar-capillary membrane caused by mechanical ventilation itself. This hypothesis finds support in some studies carried out on animal models which founds that mechanical ventilation, even when low tidal volumes (Vt) are set for a few hours, is able to induce lung injury (as shown by histologic findings). The most sensitive and specific tools the investigators can currently rely on for the study of alveolar-capillary membrane are the measurement of diffusing capacity of the lung for carbon monoxide (DLCO) and the evaluation of plasmatic levels of pulmonary surfactant protein B (SPB). DLCO is a standard, widely diffused technique for the evaluation of functional alterations of alveolar-capillary membrane and it is currently available also for patients undergoing invasive mechanical ventilation. SBP is produced by type II pneumocytes in the alveoli. An increase of its plasmatic levels is correlated to a decay of pulmonary gas exchange; SPB thus can be considered an alveolar-capillary membrane anatomical damage marker.

The primary end-point of this study is to evaluate the changes of anatomical (SPB) and functional (DLCO) features of alveolar-capillary membrane between the spontaneous breathing and mechanical ventilation as well as the progressive changes affecting DLCO and SPB over time during general anaesthesia and mechanical ventilation in patients with otherwise healthy lung undergoing elective surgery. This in order to check the timing of the observed worsening of alveolar-capillary membrane function, and to find out if the process is progressive in time.

The secondary end point is to check if the alterations of functional features of alveolar membrane (DLCO) are proportionate to the increase of alveolar injury marker (SPB), in order to understand if the worsening of alveolar-capillary membrane function is to be attributable to an anatomical damage or to a physiologic change of the ventilation-perfusion matching.


Clinical Trial Description

n/a


Study Design

Time Perspective: Prospective


Related Conditions & MeSH terms


NCT number NCT01503879
Study type Observational
Source San Gerardo Hospital
Contact Roberto Fumagalli, MD
Phone +390392339269
Email roberto.fumagalli@unimib.it
Status Recruiting
Phase N/A
Start date October 2011
Completion date October 2012

See also
  Status Clinical Trial Phase
Recruiting NCT05144633 - Blue Protocol and Eko Artificial Intelligence Are Best (BEA-BEST)
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Recruiting NCT03021902 - Nutrition and Exercise in Critical Illness Phase 2
Completed NCT02902146 - Bougie Use in Emergency Airway Management N/A
Completed NCT02901158 - Esophageal Manometry in Mechanically Ventilated Patients
Completed NCT02236559 - High Flow Therapy for the Treatment of Respiratory Failure in the ED N/A
Recruiting NCT02056093 - Comparison of Proportional Assist Ventilation And Neurally Adjusted Ventilator Assist N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Terminated NCT01083277 - Variable Ventilation During Acute Respiratory Failure N/A
Completed NCT01462279 - Effect of Thiamine on Oxygen Utilization (VO2) in Critical Illness N/A
Completed NCT01114022 - Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane N/A
Active, not recruiting NCT01058421 - Treatment of Critical Illness Polyneuromyopathy Phase 2
Completed NCT00252616 - Timing of Target Enteral Feeding in the Mechanically Ventilated Patient Phase 2/Phase 3
Recruiting NCT04098094 - Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
Recruiting NCT06051292 - Decremental Esophageal Catheter Filling Volume Titration For Transpulmonary Pressure Measurement N/A
Completed NCT04601090 - Survival Rates and Longterm Outcomes After COVID-19
Recruiting NCT05423301 - Global Physiotherapy in ICU Patients With High Risk Extubation Failure N/A
Completed NCT02447692 - Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: The PROMIZING Study N/A
Completed NCT04016480 - HFNC During Bronchoscopy for Bronchoalveolar Lavage N/A
Completed NCT04507425 - High Flow Nasal Cannula With Noninvasive Ventilation N/A