Clinical Trials Logo

Clinical Trial Summary

The primary goal of this study is to measure changes in biological markers of inflammation in critically-ill patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) while they are treated with different styles of lung-protective, artificial breathing assistance.

Secondary goals are to measure the breathing effort of patients using different artificial breathing patterns from the breathing machine.

The primary hypothesis is that volume-targeted artificial patterns will produce less inflammation. The secondary hypothesis is that volume-targeted artificial patterns will increase breathing effort compared to pressure-targeted artificial patterns.


Clinical Trial Description

Ventilator-induced lung injury contributes to the progression of ALI/ARDS,1 and is thought to occur partly from the unequal distribution of a super-normal tidal volume to normal areas of the lung.2 Alveolar overdistension causes alveolar-capillary membrane damage,3 increased-permeability pulmonary edema4 and hyaline membrane formation.5 Therefore, it is recommended that tidal volume should be reduced to 6-7 mL/kg, and that the peak alveolar pressure, or the end-inspiratory plateau pressure (PPLAT), should be limited to < 30 cm H2O.6 The National Heart Lung and Blood Institute's ARDS Network demonstrated a 22% reduction in mortality using a "lung-protective" (low tidal volume) ventilation strategy in patients with ALI/ARDS.7 High tidal volume ventilation causes a rapid and substantial increase plasma levels of proinflammatory mediators which decrease in response to lung protective ventilation.8,9 A consequence of lung-protective ventilation is dyspnea and increased work of breathing.10 Our recent study11 on work of breathing during lung-protective ventilation found that inspiratory pleural pressure changes were extraordinarily high, averaging 15-17 cm H2O. Whereas tidal volume was well controlled during volume ventilation, in contrast, it exceeded target levels in 40% of patients during pressure control ventilation.

High tidal volume-high negative pressure ventilation causes acute lung injury in animal models.12,13 Thus ventilator-induced lung injury results from excessive stress across lung tissue created by high transpulmonary (airway-pleural).pressure.14 This suggests the possibility that despite pressure control ventilation being set with a low positive airway pressure, "occult" high tidal volume-high transpulmonary pressure ventilation still may occur.11 However, during spontaneous breathing diaphragmatic contractions cause ventilation to be distributed preferentially to dorsal:caudal aspects of the lungs.15 Therefore, high transpulmonary pressures created by large negative swings in pleural pressure theoretically may not cause regional lung over-distension and ventilator-induced lung injury if tidal ventilation is preferentially distributed to dorsocaudal lung regions. However, a study16 examining the effects of diaphragmatic breathing during Pressure Control Ventilation found that dorsocaudal distribution of tidal volume was not necessarily improved compared to passive ventilation, as the amount of tidal ventilation distributed to areas of high ventilation/perfusion was unaltered. Regardless, during a recent conference on respiratory controversies in the critical care setting, it was noted that the effects of ventilator modes such as volume control, pressure control and airway pressure-release ventilation on proinflammatory cytokine expression during lung-protective ventilation has not been studied in humans.17 Thus it is unknown whether or not differences in transpulmonary pressure and tidal volume between these modes has a direct impact on lung inflammation. ;


Study Design

Allocation: Randomized, Intervention Model: Crossover Assignment, Masking: Open Label, Primary Purpose: Supportive Care


Related Conditions & MeSH terms


NCT number NCT00961168
Study type Interventional
Source University of California, San Francisco
Contact
Status Withdrawn
Phase N/A
Start date September 2009
Completion date September 2013

See also
  Status Clinical Trial Phase
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04247477 - Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS N/A
Completed NCT03315702 - Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
Not yet recruiting NCT02693912 - Changes in Alveolar Macrophage Function During Acute Lung Injury N/A
Completed NCT01659307 - The Effect of Aspirin on REducing iNflammation in Human in Vivo Model of Acute Lung Injury Phase 2
Completed NCT01552070 - Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS) Phase 2
Unknown status NCT01186874 - Epidemiology Research on Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) in Adult ICU in Shanghai N/A
Recruiting NCT00759590 - Comparison of Two Methods to Estimate the Lung Recruitment N/A
Completed NCT02475694 - Acute Lung Injury After Cardiac Surgery: Pathogenesis N/A
Completed NCT00736892 - Incidence of Acute Lung Injury: The Alien Study
Completed NCT00825357 - Biological Markers to Identify Early Sepsis and Acute Lung Injury N/A
Terminated NCT00263146 - Recruitment Maneuvers in ARDS: Effects on Respiratory Function and Inflammatory Markers. N/A
Completed NCT00188058 - Comparison of 2 Strategies of Adjustment of Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome N/A
Completed NCT00234767 - Study of the Economics of Pulmonary Artery Catheter Use in Patients With Acute Respiratory Distress Syndrome (ARDS) Phase 3
Recruiting NCT02598648 - Role and Molecular Mechanism of Farnesoid X Receptor(FXR) and RIPK3 in the Formation of Acute Respiratory Distress Syndrome in Neonates N/A
Recruiting NCT02948530 - Measurement of Lung Elastance and Transpulmonary Pressure Using Two Different Methods (Lungbarometry)
Completed NCT01532024 - Exploratory Clinical Study of Neutrophil Activation Probe (NAP) for Optical Molecular Imaging in Human Lungs Early Phase 1
Recruiting NCT01992237 - Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients N/A
Completed NCT01486342 - PET Imaging in Patients at Risk for Acute Lung Injury N/A
Withdrawn NCT01195428 - Simvastatin Effect on the Incidence of Acute Lung Injury/Adult Respiratory Distress Syndrome (ALI/ARDS) N/A