Clinical Trials Logo

Acute Lung Injury clinical trials

View clinical trials related to Acute Lung Injury.

Filter by:

NCT ID: NCT06083363 Recruiting - ARDS Clinical Trials

Longitudinal Recovery Trajectories After an Acute Respiratory Distress Syndrome, a New Understanding

TENACITY
Start date: June 29, 2023
Phase:
Study type: Observational [Patient Registry]

COVID-19 resulted in the largest cohort of critical illness survivors in history, heightened awareness of the importance of the respiratory sequelae after an acute distress respiratory syndrome (ADRS). Despite the advancement of acute-phase ARDS management, it is unknown whether there are differences in the longitudinal recovery trajectories between patients with post-ARDS due to COVID-19 and due to other causes. The main objective of the study is to identify risk factors of pulmonary sequela (lung diffusing capacity) at long-term follow-up in survivors of ARDS. The investigators are also interested in describing the long-term longitudinal recovery trajectories at a multi-dimensional level (symptoms, quality of life, neurocognitive, other lung function parameters, exercise capacity, chest imaging and molecular profiles) of ARDS survivors, and compared between ARDS caused by COVID-19. The ultimate goal is to understand the pathobiological mechanisms associated with a severe lung injury at the long term, allowing the introduction of clinical guidelines for the management of post-ARDS patients and the assignment of personalized interventions.

NCT ID: NCT06062212 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Effect of Transpulmonary MP on Prognosis of Patients With Severe ARDS Treated With VV-ECMO

Start date: October 1, 2023
Phase:
Study type: Observational

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a salvage treatment for severe acute respiratory distress syndrome (ARDS). With the large-scale implementation of VV-ECMO in critical care medicine departments in China, significant progress has been made in treating severe ARDS. However, the patient mortality rate remains high. The pathophysiological essence of ARDS is an imbalance between the body's oxygen supply and demand, causing tissue and cell hypoxia, organ dysfunction, and even death. The VV-ECMO treatment process still requires mechanical ventilation assistance. However, inappropriate mechanical ventilation settings can lead to ventilator-related lung injury (VILI). In recent years, mechanical power has gradually attracted everyone's attention and is considered the cause of VILI. The transpulmonary mechanical power is more accurate to the energy directly performed to the lung tissue. Transpulmonary mechanical energy has a specific value in judging the prognosis of mechanically ventilated patients, but its clinical significance in treating patients with VV-ECMO is unclear. This study aimed to explore the value of transpulmonary mechanical power in predicting the prognosis of patients with severe ARDS patients treated with VV-ECMO.

NCT ID: NCT06061796 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Physiological Study of Prone Position in Acute Respiratory Failure Syndrome

PHYSIO_PRONE
Start date: November 18, 2024
Phase: N/A
Study type: Interventional

ARDS is an acutely induced respiratory failure characterized by the appearance of bilateral alveolar opacities on imaging and hypoxemia Etiologies are divided into two classes: pulmonary, including all infectious pathologies, aspiration pneumonia, and drowning, and extra-pulmonary, induced by sepsis or acute pancreatitis. The mortality rate of ARDS remains high in unselected patient populations Among strategies that have proven beneficial in terms of patient outcome, prone positioning (PP) is associated with the greatest impact in terms of reduction in mortality. PP is currently recommended in the European guidelines for ARDS associated with a PaO2/FiO2 ratio < 150 mmHg in patients in whom ventilatory settings have been optimized beforehand, The failure of early PP studies to demonstrate a survival benefit in ARDS was attributed to insufficient session duration. The PROSEVA study was the first to demonstrate that a PP duration of 17 h is associated with a reduction in mortality During the COVID-19 pandemic, several centers have reported the implementation of longer PP sessions. Two strategies have emerged from these studies. In one case, the patient was left in the prone position until the criteria for stopping PP were met. Thus, the PP/supine position alternation was completely suppressed. In another published strategy, PP sessions were maintained for a period covering two nights. Furthermore, in a multicenter retrospective study, PP sessions were maintained until clinical improvement was associated with reduced mortality. In this study of 263 patients, the median duration of PP in the extended duration group was 40 h, and 75% of the sessions lasted 48 h or less. Using a propensity score, the authors showed that patients treated with an extended PP duration had a lower 3-month mortality rate than patients in the standard duration group . This protocol was also associated with a 29% cumulative incidence of pressure sores, similar to the 25% cumulative incidence reported in the PROSEVA study Other data published on pressure sores and PP of duration > 24 hours are also reassuring. Finally, a recent review recently reported that an extended PP session of > 24 h had also been used before the COVID-19 pandemic. PP sessions had a median duration of 47-78 hours and were applied mainly to ARDS secondary to community-acquired pneumonia. All pre-COVID studies were retrospective, monocentric, without a control group.

NCT ID: NCT06052436 Recruiting - Clinical trials for Systemic Inflammatory Response Syndrome

Cell Therapy With Treg Cells Obtained From Thymic Tissue (thyTreg) to Control the Immune Hyperactivation Associated With COVID-19 and/or Acute Respiratory Distress Syndrome (THYTECH2)

THYTECH2
Start date: June 27, 2023
Phase: Phase 1/Phase 2
Study type: Interventional

The investigators developed a GMP protocol to isolate Treg cells from thymic tissue (thyTreg). The thyTreg cells are being evaluated in a Phase I/II clinical trial to evaluate the safety and efficacy of the adoptive transfer of autologous thyTreg to prevent rejection in heart transplant children (NCT04924491), with preliminary results indicating the feasibility and safety of the therapy. In addition, thyTreg cells have shown low immunogenicity in the pre-clinical setting, indicating that allogeneic use of these thyTreg cells (allo-thyTreg) would have a low risk of adverse effects. These thyTreg cells could inhibit an excessive inflammation in SARS-CoV-2 infection, or ameliorate the immunological affection underlying Acute respiratory distress syndrome, improving life-threatening manifestations, restoring immune balance, and protecting affected tissues. This clinical trial is an open-label Sequential Parallel Group Phase I/II study to evaluate the safety and efficacy of allogeneic thymus derived Tregs (thyTreg) (thyTreg) in controlling the immune dysregulation associated with SARS-CoV-2 infection and/or Acute Respiratory Distress Syndrome.

NCT ID: NCT06051292 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Decremental Esophageal Catheter Filling Volume Titration For Transpulmonary Pressure Measurement

DECFVTTPM
Start date: September 18, 2023
Phase: N/A
Study type: Interventional

Mechanical ventilation is a critical intervention in the management of pediatric patients with respiratory distress. During this process, accurate measurement of transpulmonary pressure (PL) is essential to ensure the safety and efficacy of ventilation. PL is defined as the difference between alveolar pressure (Palv) and pleural pressure (Ppl). While the direct measurement of Ppl is possible, it poses a risk to tissue integrity. Thus, the primary surrogate for Ppl measurement today is esophageal pressure (Pes). However, the measurement of Pes is not without challenges. This abstract outlines the pitfalls associated with Pes measurement, emphasizing the importance of employing well-defined procedures to mitigate potential errors. These errors can range from underestimation of Pes due to underfilled catheters to overestimation resulting from overfilled catheters. To address these challenges and optimize Pes measurement, various methods have been proposed for titrating the filling volume of the esophageal catheter. In this study, investigators aim to assess a faster decremental filling method and compare it to the traditionally accepted Mojoli method in the context of pediatric patients. This research seeks to enhance the intensivists' understanding of the most efficient and accurate approach to Pes measurement during mechanical ventilation in the pediatric population, ultimately contributing to improved patient care and outcomes

NCT ID: NCT06051188 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

FCV vs PCV in Moderate to Severe ARDS

Start date: September 12, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to compare flow-controlled ventilation (FCV) and pressure-controlled ventilation (PCV) in patients with moderate to severe acute respiratory distress syndrome on the intensive care unit. The main questions it aims to answer are: - Is the mechanical power during flow-controlled ventilation lower than during pressure-controlled ventilation - To gain more understanding about other physiological effects and potential benefits of flow-controlled ventilation in comparison to pressure-controlled ventilation (o.a. the end-expiratory lung volume and homogeneity of ventilation). Participants will be randomized between two ventilation mode sequences, being 90 minutes of FCV followed by 90 minutes of PCV or vice versa.

NCT ID: NCT06038916 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

To Evaluate The Safety and Initial Efficacy of STSA-1002 Injection in Patients With Acute Respiratory Distress Syndrome

Start date: December 9, 2023
Phase: Phase 1/Phase 2
Study type: Interventional

To evaluate the safety and initial efficacy of STSA-1002 injection in patients with acute respiratory distress syndrome.

NCT ID: NCT06037330 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Nalbuphine in ARDS Patients After Surgery

Start date: September 1, 2023
Phase: Phase 4
Study type: Interventional

Critically ill patients need reasonable and moderate analgesic and sedative treatment to eliminate or reduce pain, anxiety and restlessness, improve patient comfort and cooperation, reduce patients' stress response, protect organ function and optimize prognosis. As a semi-synthetic opioid receptor agonist-antagonist, nalbuphine can bind to μ, κand δ receptors, has partial antagonistic effect on μ receptor, and is fully activated on κreceptor, with very weak δ receptor activity. Results of a study on the efficacy and safety of nalbuphine for analgesia in ICU patients showed that nalbuphine has sustained and stable analgesic effect for patients with mild to moderate analgesic needs in ICU, the onset time is comparable to sufentanil, and excessive sedation caused by sufentanil can be avoided, and the effect on hemodynamics is small. It can be used as a new choice of analgesic drugs in ICU. A single-center, randomized, single-blind, prospective study was designed to compare nalbuphine and sufentanil in patients with ARDS after surgery. Sixty patients with ARDS after surgery to be admitted to ICU were randomly divided into experimental group (Nalbuphine group) and control group (Sufentanil group). This study aims to determine the analgesic efficacy and safety of nalbuphine hydrochloride in patients with Acute Respiratory distress syndrome (ARDS) after surgery. The successful development of this study will provide more theoretical basis for the individualized analgesic sedation program for surgical patients.

NCT ID: NCT06020404 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Prone Position in infantS/Children With Acute Respiratory Distress Syndrome

PULSAR
Start date: September 1, 2023
Phase: N/A
Study type: Interventional

In adult patients with acute respiratory distress syndrome (ARDS), the beneficial effects of prone position (PP) have been well investigated and explored; it reduces intrapulmonary shunt (Qs/Qt) and enhances lung recruitment, modifying both lung ventilation (VA) and lung perfusion (Q) distribution, finally generating an improvement in VA/Q matching and reversing oxygenation impairment;it reduces right ventricular afterload, increase cardiac index in subjects with preload reserve and reverse acute cor pulmonale in severe ARDS patients, but in infants and children there is still a lack of clear evidence. Taken together, these effects explain why PP improves oxygenation, limits the occurrence of ventilator-induced lung injury and improves survival. Prone position is simple to perform in infants and in some neonatal and pediatric intensive care units is already commonly accomplished. However, a detailed analysis of the respective effects of high PEEP and prone position is lacking in infants/children with ARDS, while these two tools may interfere and/or act coherently. A recent multicenter, retrospective analysis of patients with pediatric acute respiratory distress syndrome (PARDS) describes how patients managed with lower PEEP relative to FIO2 than recommended by the ARDSNet model had higher mortality, suggesting that future clinical trials targeting PEEP management in PARDS are needed. We designed a physiological study to investigate the physiological effects of prone positioning on lung recruitability in infants/children with acute respiratory distress syndrome.

NCT ID: NCT06014138 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Volatile Sedation for Patients With the Acute Respiratory Distress Syndrome

ISO-DRIVE
Start date: November 1, 2023
Phase: Phase 2/Phase 3
Study type: Interventional

This study will investigate how different types of routine sedation may affect patient's breathing whilst on a ventilator in the Intensive Care Unit (ICU). There are different approaches to sedation which may have advantages and disadvantages. During the study patients will receive both intravenous and inhaled volatile sedation (similar to anaesthetic 'gases' used for general anaesthesia) and the drive to breath, breathing efforts and function of the lung will be assessed.