Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06291714
Other study ID # Clearsight
Secondary ID
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date August 1, 2024
Est. completion date March 31, 2026

Study information

Verified date May 2024
Source University of Giessen
Contact Emmanuel Schneck, M.D.
Phone 0049 641 985 44401
Email emmanuel.schneck@chiru.med.uni-giessen.de
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

In order to reduce the incidence of IOH, various goal-directed therapy (GDT) protocols have already been introduced with success regarding the reduction of postoperative AKI and MINS. However, these studies used an invasive hemodynamic monitoring which offered a continuous surveillance of the blood pressure. In contrast, standard non-invasive blood pressure monitoring results in a blind gap between two measurements (mostly three or five minutes). In order to address this limitation, different continuous non-invasive blood pressure monitoring devices have been introduced. The next evolutional step of non-invasive cardiac output monitoring was to prevent IOH before their onset by using the Hypotension Prediction Index (HPI). Based on the Edward ́s monitoring platform, HPI is a monitoring tool which aims to predict IOH (defined as MAP<65 mmHg for at least one minute) up to 15 min before its onset. The underlying machine learning based algorithm uses analyses features from the pressure waveform and was first calculated from a large retrospective data set of surgical patients and subsequently validated in a prospective cohort. In this study HPI showed a sensitivity of 88% and specificity of 87% for predicting IOH 15 min before its onset. Since then, own and studies of other working groups confirmed the effective prevention of IOH by the use of HPI-based GDT. Until today the arterial waveform analysis was dependent on invasive arterial measurement but since Edwards Lifesciences already promoted the start of the HPI on the ClearSight platform a non-invasive measurement will soon be possible. Further, until now it has not yet been proven that the perioperative use of a continuous non-invasive blood pressure monitoring has a beneficial effect on the patient´s outcome. Study objectives The aim of the study is to investigate whether a hemodynamic protocol based on continuous non-invasive cardiac output monitoring (ClearSight system) compared to standard care can reduce the incidence of IOH, postoperative AKI, and MINS in patients undergoing major trauma and orthopedic surgery.


Description:

Complications related to intraoperative hypotension (IOH) can be detected in most organ systems of which renal failure poses a relevant complication in the perioperative phase. Acute kidney injury (AKI) affects up to 25 % of patients attending the intensive care unit (ICU). Currently, serum creatinine and urea display the most common parameters used to detect AKI, but it may take a day or more for serum creatinine levels to accumulate in the blood of a patient with an AKI. For this reason, it may not reflect real time kidney damage or loss of function. To overcome this limitation, the cell cycle arrest biomarkers TIMP-2- and IGFBP7-quantification (Nephrocheck) has been successfully evaluated for the detection of AKI. The main advantage of both parameters is the opportunity of early detection of AKI and its point-of-care design, which makes them especially for the use on the ICU valuable. Myocardial injury after non-cardiac surgery (MINS) displays another adverse outcome associated to IOH and endangers particularly patients with an age of 45 years and older and approximately 1% of all patients suffering of MINS die within 30 days after non-cardiac surgery. In order to reduce the incidence of IOH, various goal-directed therapy (GDT) protocols have already been introduced with success regarding the reduction of postoperative AKI and MINS. However, these studies used an invasive hemodynamic monitoring which offered a continuous surveillance of the blood pressure. In contrast, standard non-invasive blood pressure monitoring results in a blind gap between two measurements (mostly three or five minutes). In order to address this limitation, different continuous non-invasive blood pressure monitoring devices have been introduced. The next evolutional step of non-invasive cardiac output monitoring was to prevent IOH before their onset by using the Hypotension Prediction Index (HPI). Based on the Edward ́s monitoring platform, HPI is a monitoring tool which aims to predict IOH (defined as MAP<65 mmHg for at least one minute) up to 15 min before its onset. Until today the arterial waveform analysis was dependent on invasive arterial measurement but since Edwards Lifesciences already promoted the start of the HPI on the ClearSight platform a non-invasive measurement will soon be possible. Further, until now it has not yet been proven that the perioperative use of a continuous non-invasive blood pressure monitoring has a beneficial effect on the patient´s outcome. Especially, a GDT based on non-invasive blood pressure monitoring might not only be able to reduce the incidence of IOH but also of the occurrence of postoperative renal failure. 2.1 Study hypothesis 2.1.1 Primary study hypothesis The perioperative use of non-invasive HPI-guided GDT reduces the incidence of IOH in patients undergoing major trauma and orthopedic surgery. 2.1.2 Secondary study hypothesis - The perioperative use of non-invasive HPI-guided GDT reduces the occurrence of postoperative renal failure in patients undergoing major trauma and orthopedic surgery. - The perioperative use of non-invasive HPI-guided GDT reduces the occurrence of postoperative MINS in patients undergoing major trauma and orthopedic surgery. 2.2 Study objectives The aim of the study is to investigate whether a hemodynamic protocol based on continuous non-invasive cardiac output monitoring (ClearSight system) compared to standard care can reduce the incidence of IOH, postoperative AKI, and MINS in patients undergoing major trauma and orthopedic surgery. 3 Methodology 3.1 Study design The study is designed as a monocentric randomized prospective interventional trial comparing goal directed hemodynamic management using continuous non-invasive cardiac output monitoring (ClearSight system) to standard care. 3.2 Study centers University Hospital Giessen, Department of Anesthesiology and Intensive Care Medicine 3.3 Study Population 3.3.1 Study groups Major Trauma and Orthopedic Surgery 3.4 Working plan 3.4.1 Preoperative Assessment Patients are recruited before surgery after checking inclusion and exclusion criteria. Informed consent is obtained at this time. Patients will be randomized 1:1 to the two groups after achieving the patient´s informed consent. Further, the following basic characteristics are obtained: - Age, sex, height, weight, ASA score - Pre-existing conditions (hypertension, coronary heart disease with and without history of myocardial infarction, peripheral arterial disease, renal failure, chronic obstructive pulmonary disease, diabetes) - Previous major surgeries - Current prescription of medication Furthermore, the following laboratory results will be gained: - Blood cell count - Global coagulatory function (Internationalized Ratio, thromboplastine time, fibrinogen levels) - Parameters of renal function (Creatinine, urea, Nephrocheck, blood and urinary mitochondrial DNA) - Parameters of cardiac function (Troponin I, Creatinine kinase, Myoglobin, Brain Natriuretic Peptide) - Inflammatory Parameters (C-Reactive Protein, Procalcitonin) - Parameters of endothelial function (Angiopoietins 1 and 2, Syndecan-1 and intercellular adhesion molecule-1 (ICAM-1)), Bio-ADM 3.4.2 Time Points The study time points are defined as followed: prior to surgery as well as immediately, 24, 72, and 168 hours after surgery (depending on the duration of hospital stay). At any time point clinical data, blood and urine will be collected (depending on the duration of hospital stay). 3.4.3 Perioperative Management 3.4.3.1 Induction and Maintenance of anesthesia All patients receive the standard hemodynamic monitoring (electrocardiogram, non-invasive blood pressure, and plethysmography). Non-invasive blood pressure will be measured every three minutes. Independently of the randomized study group, induction of anesthesia will be performed with fentanyl, propofol, and cis-atracurium. Dosages will be chosen according to the patient´s age and body weight as well as pre-existing diseases according to the assessment of the attending physician. After intubation, all patients are ventilated with a tidal volume of 8 ml/kg ideal bodyweight and with regard to the capnography (target end-tidal CO2 of 35-40 mmHg). The control group will be managed according to the investigators´ SOP with the aim of an MAD &gt; 65mmHg. 3.4.3.2 Management of interventional group patients Prior to the surgery the rest cardiac index and contractility (dp/dt) must be quantified. For this purpose, the cardiac index will be measured in the preoperative night by applicating the HPI ClearSight system through a study team member. A nighttime cardiac index is accepted when more than three reliable measurements were recorded in rest over a time period of 60 minutes. If the rest cardiac index is not available throughout the night because the patient´s sleep is altered by the measurements, the awake cardiac index will be quantified until the monitoring is stopped for the night sleep of the patient. This mean baseline measurements (CI and dp/dt) will then be the target cardiac index throughout the study algorithm (figure 1). In case no sleep measurement was achievable, the awake measurement will be accounted as baseline value. The perioperative study intervention period starts with the beginning of anesthesia and ends at the end of surgery. Intraoperative mean arterial pressure will be maintained at least at 65 mmHg and cardiac index and dp/dt will be individually optimized according to the GDT algorithm. 3.5 Data Processing Data collection is carried out consistently on pre-defined time-points in the investigators´ electronic patient data management system into a separate study database (Microsoft Excel). The collected data is pseudonymised in the database based on a random key method. The chart with the patient data and decrypting keys is kept in the study center for at least 15 years after the end of the study (publication). Data anonymization is intentionally not performed to give patients the option for data insight or deletion of their data in the future. Data management and evaluation is performed by the study team. 3.6 Patient number and Biometrics The aim of the study is to show the impact of non-invasive cardiac output monitoring on the incidence of IOH in a cohort of trauma and orthopedic surgery. Sample size calculation was performed with regard to a recent study by Maheshwari et al. who investigated the effect of HPI on the prevention of hypotension. This study was chosen because the primary endpoint, respectively the definition of hypotension (MAP<65 mmHg), was identical to the investigators´ study and they investigated also non-cardiac surgical patients. In this study, the mean number of hypotensive periods (given as an area under the curve of MAP ≤65 mmHg) of patients without hemodynamic management accounted to 34.2 [8,5-112.7] compared to 32.7 [6.3-102] in patients with hemodynamic measurement. Aiming for an alpha of 0.05 and power of 0.95, the sample size calculation resulted in 66 patients per study group (total 132 patients, based on the use of the Wilcoxon test). In order to address potential dropouts (estimated drop-out rate 10-20%) the investigators chose to increase the patients numbers to 75 patients in each study group. Next to the target parameters, data of the hemodynamic and respiratory function will be achieved as well as of the anesthetic and hemodynamic management (please see CRF). Furthermore, general characteristics such as age, gender, body mass index, as well as pre-existing conditions and prescriptions will be assessed. For the target variables, the results will be investigated and analyzed descriptively (e.g., checked for distribution). Metric characteristics (mean and standard deviation) as well as median and interquartile difference and achieved frequencies (with a percentage specification) will be determined. As part of the exploratory analysis, the structural equilibrium (homogeneity) of the treatment groups will also be checked. Depending on the distribution of the observation values, appropriate test methods are used. The outcome of the statistical testing will be controlled for influence of secondary parameters, as there are suspected reasons for hypotension, type and dosage of vasopressors used during the procedure, as well as type and dosage of inotropic medication. All analysis will be done using R-Plus scripting (R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/). 3.7 Benefit - Risk assessment 3.7.1 Potential benefit Based on a continuous monitoring by additional monitoring system an early detection of potential life-threatening events and acute kidney injury is possible. This can result in an optimization of the patients' therapy and a better outcome. 3.7.2 Potential Risks The presented study is an interventional study. The potential risks are marginal. The usage of an additional non-invasive cardiac output monitoring is minimal. The time points of blood samples for the study are in line with routine sampling. Based on this, there is no additional risk for the patient. 3.7.3 Benefit/ Risk analysis The benefit for the patients is additional monitoring, based on an additional monitoring device and the supervising study doctor, who can support the treating anesthesiologist with information in potentially critical situations. Thereby, it is possible to treat early goal-directed and possibly improve the patient´s outcome. Considering the potential benefits of the generated information for the patient in comparison to the expected risks, the beneficial effect is overbalanced. The expected gain in knowledge from this study could be used for optimizing perioperative care.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 150
Est. completion date March 31, 2026
Est. primary completion date March 31, 2025
Accepts healthy volunteers No
Gender All
Age group 45 Years and older
Eligibility Inclusion Criteria: - Patients undergoing major trauma or orthopedic surgery in supine position, which is defined as: - Reconstructive Surgery of the pelvis (e.g., stabilization of fractures) - Total hip arthroplasty - Surgery of the proximal femur (e.g., stabilization of fractures) - Total knee arthroplasty - Surgery of the spine - Performance of general anesthesia with planned duration of >90min - Age = 45 years Exclusion Criteria: - Predefined exclusion criteria are: - Planned invasive blood pressure monitoring - Participation in another interventional study - Pregnancy and nursing mothers - Surgery without controlled mechanical ventilation - ASA I or IV - Arterial Fibrillation - Allergy against gelantine

Study Design


Intervention

Device:
GDT-based hemodynamic management based on Clearsight device
Intraoperative use of a HPI-guided hemodynamic goal-directed protocol based on the non-invasive measurement of HPI (Clearsight system)

Locations

Country Name City State
n/a

Sponsors (2)

Lead Sponsor Collaborator
University of Giessen Edwards Lifesciences

References & Publications (42)

Alyabsi M, Gaid R, Alqunaibet A, Alaskar A, Mahmud A, Alghamdi J. Impact of the 2017 ACC/AHA guideline on the prevalence of elevated blood pressure and hypertension: a cross-sectional analysis of 10 799 individuals. BMJ Open. 2020 Dec 31;10(12):e041973. doi: 10.1136/bmjopen-2020-041973. — View Citation

Arulkumaran N, Corredor C, Hamilton MA, Ball J, Grounds RM, Rhodes A, Cecconi M. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. Br J Anaesth. 2014 Apr;112(4):648-59. doi: 10.1093/bja/aet466. Epub 2014 Jan 10. — View Citation

Bijker JB, van Klei WA, Kappen TH, van Wolfswinkel L, Moons KG, Kalkman CJ. Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology. 2007 Aug;107(2):213-20. doi: 10.1097/01.anes.0000270724.40897.8e. — View Citation

Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz P, Graham M, Wang CY, Berwanger O, Pearse RM, Biccard BM, Abraham V, Malaga G, Hillis GS, Rodseth RN, Cook D, Polanczyk CA, Szczeklik W, Sessler DI, Sheth T, Ackland GL, Leuwer M, Garg AX, Lemanach Y, Pettit S, Heels-Ansdell D, Luratibuse G, Walsh M, Sapsford R, Schunemann HJ, Kurz A, Thomas S, Mrkobrada M, Thabane L, Gerstein H, Paniagua P, Nagele P, Raina P, Yusuf S, Devereaux PJ, Devereaux PJ, Sessler DI, Walsh M, Guyatt G, McQueen MJ, Bhandari M, Cook D, Bosch J, Buckley N, Yusuf S, Chow CK, Hillis GS, Halliwell R, Li S, Lee VW, Mooney J, Polanczyk CA, Furtado MV, Berwanger O, Suzumura E, Santucci E, Leite K, Santo JA, Jardim CA, Cavalcanti AB, Guimaraes HP, Jacka MJ, Graham M, McAlister F, McMurtry S, Townsend D, Pannu N, Bagshaw S, Bessissow A, Bhandari M, Duceppe E, Eikelboom J, Ganame J, Hankinson J, Hill S, Jolly S, Lamy A, Ling E, Magloire P, Pare G, Reddy D, Szalay D, Tittley J, Weitz J, Whitlock R, Darvish-Kazim S, Debeer J, Kavsak P, Kearon C, Mizera R, O'Donnell M, McQueen M, Pinthus J, Ribas S, Simunovic M, Tandon V, Vanhelder T, Winemaker M, Gerstein H, McDonald S, O'Bryne P, Patel A, Paul J, Punthakee Z, Raymer K, Salehian O, Spencer F, Walter S, Worster A, Adili A, Clase C, Cook D, Crowther M, Douketis J, Gangji A, Jackson P, Lim W, Lovrics P, Mazzadi S, Orovan W, Rudkowski J, Soth M, Tiboni M, Acedillo R, Garg A, Hildebrand A, Lam N, Macneil D, Mrkobrada M, Roshanov PS, Srinathan SK, Ramsey C, John PS, Thorlacius L, Siddiqui FS, Grocott HP, McKay A, Lee TW, Amadeo R, Funk D, McDonald H, Zacharias J, Villar JC, Cortes OL, Chaparro MS, Vasquez S, Castaneda A, Ferreira S, Coriat P, Monneret D, Goarin JP, Esteve CI, Royer C, Daas G, Chan MT, Choi GY, Gin T, Lit LC, Xavier D, Sigamani A, Faruqui A, Dhanpal R, Almeida S, Cherian J, Furruqh S, Abraham V, Afzal L, George P, Mala S, Schunemann H, Muti P, Vizza E, Wang CY, Ong GS, Mansor M, Tan AS, Shariffuddin II, Vasanthan V, Hashim NH, Undok AW, Ki U, Lai HY, Ahmad WA, Razack AH, Malaga G, Valderrama-Victoria V, Loza-Herrera JD, De Los Angeles Lazo M, Rotta-Rotta A, Szczeklik W, Sokolowska B, Musial J, Gorka J, Iwaszczuk P, Kozka M, Chwala M, Raczek M, Mrowiecki T, Kaczmarek B, Biccard B, Cassimjee H, Gopalan D, Kisten T, Mugabi A, Naidoo P, Naidoo R, Rodseth R, Skinner D, Torborg A, Paniagua P, Urrutia G, Maestre ML, Santalo M, Gonzalez R, Font A, Martinez C, Pelaez X, De Antonio M, Villamor JM, Garcia JA, Ferre MJ, Popova E, Alonso-Coello P, Garutti I, Cruz P, Fernandez C, Palencia M, Diaz S, Del Castillo T, Varela A, de Miguel A, Munoz M, Pineiro P, Cusati G, Del Barrio M, Membrillo MJ, Orozco D, Reyes F, Sapsford RJ, Barth J, Scott J, Hall A, Howell S, Lobley M, Woods J, Howard S, Fletcher J, Dewhirst N, Williams C, Rushton A, Welters I, Leuwer M, Pearse R, Ackland G, Khan A, Niebrzegowska E, Benton S, Wragg A, Archbold A, Smith A, McAlees E, Ramballi C, Macdonald N, Januszewska M, Stephens R, Reyes A, Paredes LG, Sultan P, Cain D, Whittle J, Del Arroyo AG, Sessler DI, Kurz A, Sun Z, Finnegan PS, Egan C, Honar H, Shahinyan A, Panjasawatwong K, Fu AY, Wang S, Reineks E, Nagele P, Blood J, Kalin M, Gibson D, Wildes T; Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Writing Group, on behalf of The Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Investigators; Appendix 1. The Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Study Investigators Writing Group; Appendix 2. The Vascular events In noncardiac Surgery patIents cOhort evaluatioN Operations Committee; Vascular events In noncardiac Surgery patIents cOhort evaluatioN VISION Study Investigators. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014 Mar;120(3):564-78. doi: 10.1097/ALN.0000000000000113. — View Citation

Brooks SE, Peetz AB. Evidence-Based Care of Geriatric Trauma Patients. Surg Clin North Am. 2017 Oct;97(5):1157-1174. doi: 10.1016/j.suc.2017.06.006. — View Citation

Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, Della Rocca G. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15(3):R132. doi: 10.1186/cc10246. Epub 2011 May 30. — View Citation

Chen G, Chung E, Meng L, Alexander B, Vu T, Rinehart J, Cannesson M. Impact of non invasive and beat-to-beat arterial pressure monitoring on intraoperative hemodynamic management. J Clin Monit Comput. 2012 Apr;26(2):133-40. doi: 10.1007/s10877-012-9344-2. Epub 2012 Mar 1. — View Citation

Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005 Nov;16(11):3365-70. doi: 10.1681/ASN.2004090740. Epub 2005 Sep 21. — View Citation

Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an Arterial Waveform Analysis-Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth Analg. 2020 Feb;130(2):352-359. doi: 10.1213/ANE.0000000000004121. Erratum In: Anesth Analg. 2023 Sep 1;137(3):e33. — View Citation

de Mendonca A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, Takala J, Sprung C, Cantraine F. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000 Jul;26(7):915-21. doi: 10.1007/s001340051281. — View Citation

Devereaux PJ, Szczeklik W. Myocardial injury after non-cardiac surgery: diagnosis and management. Eur Heart J. 2020 May 1;41(32):3083-3091. doi: 10.1093/eurheartj/ehz301. — View Citation

Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S; INPRESS Study Group. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2017 Oct 10;318(14):1346-1357. doi: 10.1001/jama.2017.14172. — View Citation

Giglio M, Dalfino L, Puntillo F, Rubino G, Marucci M, Brienza N. Haemodynamic goal-directed therapy in cardiac and vascular surgery. A systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2012 Nov;15(5):878-87. doi: 10.1093/icvts/ivs323. Epub 2012 Jul 24. — View Citation

Gillies MA, Shah AS, Mullenheim J, Tricklebank S, Owen T, Antonelli J, Strachan F, Mills NL, Pearse RM. Perioperative myocardial injury in patients receiving cardiac output-guided haemodynamic therapy: a substudy of the OPTIMISE Trial. Br J Anaesth. 2015 Aug;115(2):227-33. doi: 10.1093/bja/aev137. Epub 2015 May 21. — View Citation

Habicher M, Balzer F, Mezger V, Niclas J, Muller M, Perka C, Kramer M, Sander M. Implementation of goal-directed fluid therapy during hip revision arthroplasty: a matched cohort study. Perioper Med (Lond). 2016 Dec 13;5:31. doi: 10.1186/s13741-016-0056-x. eCollection 2016. — View Citation

Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology. 2018 Oct;129(4):663-674. doi: 10.1097/ALN.0000000000002300. — View Citation

Hruska K, Ruge T. The Tragically Hip: Trauma in Elderly Patients. Emerg Med Clin North Am. 2018 Feb;36(1):219-235. doi: 10.1016/j.emc.2017.08.014. — View Citation

Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013 Feb 6;17(1):R25. doi: 10.1186/cc12503. — View Citation

Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013 Feb 4;17(1):204. doi: 10.1186/cc11454. — View Citation

Lehman LW, Saeed M, Moody G, Mark R. Hypotension as a Risk Factor for Acute Kidney Injury in ICU Patients. Comput Cardiol (2010). 2010;37:1095-1098. — View Citation

Liu YL, Prowle J, Licari E, Uchino S, Bellomo R. Changes in blood pressure before the development of nosocomial acute kidney injury. Nephrol Dial Transplant. 2009 Feb;24(2):504-11. doi: 10.1093/ndt/gfn490. Epub 2008 Sep 3. — View Citation

Maheshwari K, Khanna S, Bajracharya GR, Makarova N, Riter Q, Raza S, Cywinski JB, Argalious M, Kurz A, Sessler DI. A Randomized Trial of Continuous Noninvasive Blood Pressure Monitoring During Noncardiac Surgery. Anesth Analg. 2018 Aug;127(2):424-431. doi: 10.1213/ANE.0000000000003482. — View Citation

Maheshwari K, Shimada T, Yang D, Khanna S, Cywinski JB, Irefin SA, Ayad S, Turan A, Ruetzler K, Qiu Y, Saha P, Mascha EJ, Sessler DI. Hypotension Prediction Index for Prevention of Hypotension during Moderate- to High-risk Noncardiac Surgery. Anesthesiology. 2020 Dec 1;133(6):1214-1222. doi: 10.1097/ALN.0000000000003557. — View Citation

Mandelbaum T, Scott DJ, Lee J, Mark RG, Malhotra A, Waikar SS, Howell MD, Talmor D. Outcome of critically ill patients with acute kidney injury using the Acute Kidney Injury Network criteria. Crit Care Med. 2011 Dec;39(12):2659-64. doi: 10.1097/CCM.0b013e3182281f1b. — View Citation

Martensson J, Martling CR, Bell M. Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth. 2012 Dec;109(6):843-50. doi: 10.1093/bja/aes357. Epub 2012 Oct 9. — View Citation

Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, Immink RV, Jobsis DA, Hollmann MW, Lahpor JR, de Mol BA, van Lieshout JJ. Noninvasive continuous arterial blood pressure monitoring with Nexfin(R). Anesthesiology. 2012 May;116(5):1092-103. doi: 10.1097/ALN.0b013e31824f94ed. — View Citation

Meidert AS, Nold JS, Hornung R, Paulus AC, Zwissler B, Czerner S. The impact of continuous non-invasive arterial blood pressure monitoring on blood pressure stability during general anaesthesia in orthopaedic patients: A randomised trial. Eur J Anaesthesiol. 2017 Nov;34(11):716-722. doi: 10.1097/EJA.0000000000000690. — View Citation

Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005 Jan;100(1):4-10. doi: 10.1213/01.ANE.0000147519.82841.5E. — View Citation

Morris RW, Watterson LM, Westhorpe RN, Webb RK. Crisis management during anaesthesia: hypotension. Qual Saf Health Care. 2005 Jun;14(3):e11. doi: 10.1136/qshc.2002.004440. — View Citation

Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, Bodian CA. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005 Sep;101(3):622-628. doi: 10.1213/01.ANE.0000175214.38450.91. — View Citation

Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology. 2017 Jan;126(1):47-65. doi: 10.1097/ALN.0000000000001432. — View Citation

Salzwedel C, Puig J, Carstens A, Bein B, Molnar Z, Kiss K, Hussain A, Belda J, Kirov MY, Sakka SG, Reuter DA. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013 Sep 8;17(5):R191. doi: 10.1186/cc12885. — View Citation

Scheeren TW, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013 Jun;27(3):225-33. doi: 10.1007/s10877-013-9461-6. Epub 2013 Apr 5. — View Citation

Schneck E, Schulte D, Habig L, Ruhrmann S, Edinger F, Markmann M, Habicher M, Rickert M, Koch C, Sander M. Hypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial. J Clin Monit Comput. 2020 Dec;34(6):1149-1158. doi: 10.1007/s10877-019-00433-6. Epub 2019 Nov 29. — View Citation

Shem Tov L, Matot I. Frailty and anesthesia. Curr Opin Anaesthesiol. 2017 Jun;30(3):409-417. doi: 10.1097/ACO.0000000000000456. — View Citation

Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative Major Adverse Cardiovascular and Cerebrovascular Events Associated With Noncardiac Surgery. JAMA Cardiol. 2017 Feb 1;2(2):181-187. doi: 10.1001/jamacardio.2016.4792. — View Citation

Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery-a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017 Jun 12;21(1):141. doi: 10.1186/s13054-017-1728-8. — View Citation

van Waes JA, van Klei WA, Wijeysundera DN, van Wolfswinkel L, Lindsay TF, Beattie WS. Association between Intraoperative Hypotension and Myocardial Injury after Vascular Surgery. Anesthesiology. 2016 Jan;124(1):35-44. doi: 10.1097/ALN.0000000000000922. — View Citation

Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, Humphreys BD, Koyner JL, Liu KD, Mour G, Nolin TD, Bihorac A; American Society of Nephrology Acute Kidney Injury Advisory Group. Clinical Use of the Urine Biomarker [TIMP-2] x [IGFBP7] for Acute Kidney Injury Risk Assessment. Am J Kidney Dis. 2016 Jul;68(1):19-28. doi: 10.1053/j.ajkd.2015.12.033. Epub 2016 Mar 4. — View Citation

Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013 Sep;119(3):507-15. doi: 10.1097/ALN.0b013e3182a10e26. — View Citation

Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, Schenk J, Terwindt LE, Hollmann MW, Vlaar AP, Veelo DP. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA. 2020 Mar 17;323(11):1052-1060. doi: 10.1001/jama.2020.0592. — View Citation

Writing Committee for the VISION Study Investigators; Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, Srinathan SK, Walsh M, Abraham V, Pearse R, Wang CY, Sessler DI, Kurz A, Szczeklik W, Berwanger O, Villar JC, Malaga G, Garg AX, Chow CK, Ackland G, Patel A, Borges FK, Belley-Cote EP, Duceppe E, Spence J, Tandon V, Williams C, Sapsford RJ, Polanczyk CA, Tiboni M, Alonso-Coello P, Faruqui A, Heels-Ansdell D, Lamy A, Whitlock R, LeManach Y, Roshanov PS, McGillion M, Kavsak P, McQueen MJ, Thabane L, Rodseth RN, Buse GAL, Bhandari M, Garutti I, Jacka MJ, Schunemann HJ, Cortes OL, Coriat P, Dvirnik N, Botto F, Pettit S, Jaffe AS, Guyatt GH. Association of Postoperative High-Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery. JAMA. 2017 Apr 25;317(16):1642-1651. doi: 10.1001/jama.2017.4360. — View Citation

* Note: There are 42 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change of the frequency of intraoperative hypotension Change of the frequency of intraoperative hypotension (defined as MAP below 65mmHg, frequency ((n)/h) through study completion, an average of 1 year
Primary Change of the absolute duration of of intraoperative hypotension Change of the absolute duration of intraoperative hypotension (defined as MAP below 65mmHg, unit: minutes) through study completion, an average of 1 year
Primary Change of the relative duration of intraoperative hypotension Change of the relative duration of intraoperative hypotension (defined as MAP below 65mmHg, unit: percentage of total anesthesia time) through study completion, an average of 1 year
Secondary AKI Occurrence of an AKI (according to the KDIGO criteria or an increase of Nephrocheck > 0.3 (ng/ml)^2/1000; both parameters will be presented in the results for AKI) through study completion, an average of 1 year
Secondary MINS Occurrence of MINS (TNI exceeding the 99th percentile of the normal population) through study completion, an average of 1 year
See also
  Status Clinical Trial Phase
Recruiting NCT05538351 - A Study to Support the Development of the Enhanced Fluid Assessment Tool for Patients With Acute Kidney Injury
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Completed NCT03938038 - Guidance of Ultrasound in Intensive Care to Direct Euvolemia N/A
Recruiting NCT05805709 - A Patient-centered Trial of a Process-of-care Intervention in Hospitalized AKI Patients: the COPE-AKI Trial N/A
Recruiting NCT05318196 - Molecular Prediction of Development, Progression or Complications of Kidney, Immune or Transplantation-related Diseases
Recruiting NCT05897840 - Continuous Central Venous Oxygen Saturation Measurement as a Tool to Predict Hemodynamic Instability Related to Renal Replacement Therapy in Critically Ill Patients N/A
Recruiting NCT04986137 - Fractional Excretion of Urea for the Differential Diagnosis of Acute Kidney Injury in Cirrhosis
Terminated NCT04293744 - Acute Kidney Injury After Cardiac Surgery N/A
Completed NCT04095143 - Ultrasound Markers of Organ Congestion in Severe Acute Kidney Injury
Not yet recruiting NCT06026592 - Detection of Plasma DNA of Renal Origin in Kidney Transplant Patients
Not yet recruiting NCT06064305 - Transcriptional and Proteomic Analysis of Acute Kidney Injury
Terminated NCT03438877 - Intensive Versus Regular Dosage For PD In AKI. N/A
Terminated NCT03305549 - Recovery After Dialysis-Requiring Acute Kidney Injury N/A
Completed NCT05990660 - Renal Assist Device (RAD) for Patients With Renal Insufficiency Undergoing Cardiac Surgery N/A
Completed NCT04062994 - A Clinical Decision Support Trial to Reduce Intraoperative Hypotension
Terminated NCT02860130 - Clinical Evaluation of Use of Prismocitrate 18 in Patients Undergoing Acute Continuous Renal Replacement Therapy (CRRT) Phase 3
Completed NCT06000098 - Consol Time and Acute Kidney Injury in Robotic-assisted Prostatectomy
Not yet recruiting NCT05548725 - Relation Between Acute Kidney Injury and Mineral Bone Disease
Completed NCT02665377 - Prevention of Akute Kidney Injury, Hearttransplant, ANP Phase 3
Terminated NCT03539861 - Immunomodulatory Biomimetic Device to Treat Myocardial Stunning in End-stage Renal Disease Patients N/A