Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02837276
Other study ID # 13-0232-F1V
Secondary ID
Status Completed
Phase
First received
Last updated
Start date July 2016
Est. completion date January 15, 2018

Study information

Verified date August 2019
Source University of Kentucky
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

This pilot study aims at investigating the relationship between intermittent hypoxemia (IH) and acute kidney injury (AKI) in preterm infants.

AIM 1: Test the hypothesis that intermittent hypoxemia is associated kidney injury in preterm infants, as reflected by a rise in serum creatinine.

AIM 2: Test the hypothesis that there is rise in acute kidney injury urinary biomarkers with increased intermittent hypoxemia.


Description:

BACKGROUND:

Preterm birth is a major health care concern and although survival of premature infants has improved, the incidence of neonatal morbidities has slightly decreased especially in cases of extreme prematurity. Apnea of prematurity (immature respiratory control) is a major complication in Neonatal Intensive Care Units occurring in virtually all infants born before 28 weeks gestation. Intermittent Hypoxemia (IH), episodic oxygen desaturation events, is generally attributed to apnea of prematurity often superimposed upon suboptimal lung function. Intermittent hypoxemia events are common in preterm infants and may lead to both short-term and long-term morbidities. Typically, the incidence of intermittent hypoxemia (IH) increases over the first 4 weeks of life before plateauing at weeks 6-8. In addition to inducing oxidative stress by increasing production of reactive oxygen species, this hypoxemia/reoxygenation cycle is thought to induce a pro-inflammatory cascade of transcription factors that promotes activation of inflammatory cells resulting in multisystem morbidity. These morbidities include retinopathy of prematurity, cardiorespiratory instability, and poor neurodevelopmental outcomes. A potential morbidity that has yet to be investigated is acute kidney injury (AKI).

AKI is associated with morbidity and mortality in critically ill neonates. The risk of AKI is higher in very low birth weight infants requiring assisted ventilation and ionotropic support, and in infants with congenital heart disease. Additionally, AKI occurs more frequently in infants who suffered severe birth asphyxia. While it has been established that end-stage kidney disease (ESKD) is associated with worsening sleep apnea in adults, it has been proposed that sleep apnea and nocturnal hypoxemia may contribute to kidney injury, the development of chronic kidney disease (CKD), and the progression to kidney failure. Proposed mechanisms of kidney disease via intermittent nocturnal hypoxemia include 1: direct intrarenal hypoxemia (resulting in tubulointerstitial injury) 2: an increase in oxidative stress, inflammatory cytokines, and systemic blood pressure (via activation of the renin-angiotensin system). Hence It is plausible that IH may modulate AKI in preterm neonates. The investigators goal is to test the hypothesis that intermittent hypoxemia is associated with Acute Kidney Injury in preterm infants. Investigation of relationship between IH and AKI may provide further insight into onset and prevention given the recent advancements in the detection and characterization of AKI in this vulnerable population.

SPECIFIC AIMS:

AIM 1: Test the hypothesis that intermittent hypoxemia is associated kidney injury in preterm infants, as reflected by a rise in serum creatinine.

APPROACH: Premature infants with GA 23 to 31 weeks will be prospectively recruited from Kentucky Children's Hospital Neonatal Intensive Care Unit (NICU). High resolution oxygen saturation monitoring will be performed for the first 2 months of life. Creatinine levels will be collected as they are obtained routinely on premature infants in the NICU. Demographic data will be collected including gestational age, postnatal age, gender and race. Clinical data including respiratory support, caffeine use, vital signs and neonatal morbidities will be documented. Scores to predict severity of disease and mortality in newborns will be used. The investigators will assess the cumulative effect of IH on AKI as reflected by serum creatinine measurements at 1 month, 2 months, and discharge in extremely preterm infants.

AIM 2: Test the hypothesis that there is rise in acute kidney injury urinary biomarkers with increased intermittent hypoxemia.

APPROACH: Similar to Aim 1, premature infants with GA 23 to 31 weeks will be prospectively recruited from Kentucky Children's Hospital Neonatal Intensive Care Unit (NICU). High resolution oxygen saturation monitoring will be performed for the first 2 months of life. Urine will be collected daily in the first week of life and then weekly until 2 months of age and hospital discharge. Collecting urine is noninvasive and minimal risk. Samples will be de-identified and stored in the investigators research laboratory. Standardized kits to measure biomarkers associated with kidney injury such as albumin, β2-microglobulin (β2MG), cystatin C (Cys C), epidermal growth factor (EGF), neutrophil gelatinase associated lipocalin (NGAL), osteopontin (OPN), and uromodulin (UMOD) will be used. Since IH increases with age and persists during NICU stay, the cumulative effect of intermittent hypoxemia will be correlated with biomarker concentrations weekly throughout the study period and at discharge.

Oxygen saturation will be continuously monitored upon admission with high resolution pulse oximeters, with 2 second averaging time and 1Hz sampling rate. Novel software will be utilized to analyze raw data per the following definitions:

1. Intermittent Hypoxemia is primarily defined as a drop in oxygen saturation (SpO2) to less than 80% for more than 4 seconds and less than 3 minutes.

Secondary measures for IH include:

2. A drop in SpO2 of <85% for >4 seconds and <3 minutes duration

3. A decline in SpO2 by >4% from baseline to <90% that lasted >4 seconds

4. Percent time spent below above threshold, includes sustained hypoxemia (>3min duration)

5. Number of hyperoxemic events defined as an increase in SpO2 of >95%

6. Duration and nadir of each oxygen desaturation and hyperoxemic event

7. Mean SpO2/day

Sample size: There is no data available in the literature to calculate sample size. Based on NICU census, consent success rate, and accounting for data loss, the investigators will recruit a total of 50 patients for this pilot project. To maintain a balanced sample, the investigators will stratify enrollment by gestational age targeting 15-18 subjects in each of the following groups: 23-25 weeks gestation, 26-28 weeks gestation, 29-31 weeks gestation.


Recruitment information / eligibility

Status Completed
Enrollment 41
Est. completion date January 15, 2018
Est. primary completion date January 15, 2018
Accepts healthy volunteers No
Gender All
Age group N/A to 2 Months
Eligibility Inclusion Criteria:

- Preterm infants less than 32 weeks gestational age admitted to University of Kentucky neonatal intensive care unit

Exclusion Criteria:

- Major congenital malformations

Study Design


Locations

Country Name City State
United States University of Kentucky - Kentucky Children's Hospital Lexington Kentucky

Sponsors (2)

Lead Sponsor Collaborator
Elie G. Abu Jawdeh, MD University of Kentucky

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Test the hypothesis that intermittent hypoxemia is associated with acute kidney injury, as reflected by a rise in creatinine or urinary biomarkers 1 year
See also
  Status Clinical Trial Phase
Recruiting NCT05538351 - A Study to Support the Development of the Enhanced Fluid Assessment Tool for Patients With Acute Kidney Injury
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Completed NCT03938038 - Guidance of Ultrasound in Intensive Care to Direct Euvolemia N/A
Recruiting NCT05805709 - A Patient-centered Trial of a Process-of-care Intervention in Hospitalized AKI Patients: the COPE-AKI Trial N/A
Recruiting NCT05318196 - Molecular Prediction of Development, Progression or Complications of Kidney, Immune or Transplantation-related Diseases
Recruiting NCT05897840 - Continuous Central Venous Oxygen Saturation Measurement as a Tool to Predict Hemodynamic Instability Related to Renal Replacement Therapy in Critically Ill Patients N/A
Recruiting NCT04986137 - Fractional Excretion of Urea for the Differential Diagnosis of Acute Kidney Injury in Cirrhosis
Terminated NCT04293744 - Acute Kidney Injury After Cardiac Surgery N/A
Completed NCT04095143 - Ultrasound Markers of Organ Congestion in Severe Acute Kidney Injury
Not yet recruiting NCT06026592 - Detection of Plasma DNA of Renal Origin in Kidney Transplant Patients
Not yet recruiting NCT06064305 - Transcriptional and Proteomic Analysis of Acute Kidney Injury
Terminated NCT03438877 - Intensive Versus Regular Dosage For PD In AKI. N/A
Terminated NCT03305549 - Recovery After Dialysis-Requiring Acute Kidney Injury N/A
Completed NCT05990660 - Renal Assist Device (RAD) for Patients With Renal Insufficiency Undergoing Cardiac Surgery N/A
Completed NCT04062994 - A Clinical Decision Support Trial to Reduce Intraoperative Hypotension
Terminated NCT02860130 - Clinical Evaluation of Use of Prismocitrate 18 in Patients Undergoing Acute Continuous Renal Replacement Therapy (CRRT) Phase 3
Completed NCT06000098 - Consol Time and Acute Kidney Injury in Robotic-assisted Prostatectomy
Not yet recruiting NCT05548725 - Relation Between Acute Kidney Injury and Mineral Bone Disease
Completed NCT02665377 - Prevention of Akute Kidney Injury, Hearttransplant, ANP Phase 3
Terminated NCT03539861 - Immunomodulatory Biomimetic Device to Treat Myocardial Stunning in End-stage Renal Disease Patients N/A