Clinical Trials Logo

Clinical Trial Summary

Even though females are 2- to 10-times more likely to suffer an anterior cruciate ligament (ACL) injury, males represent the largest population of total ACL injuries. Consequently, there is a larger population of males that endure significant pain, functional limitations, and radiographic signs of knee osteoarthritis (OA) within 12 to 20 years of injury. To reduce the burden of OA, The National Public Health Agenda for Osteoarthritis recommends expanding and refining evidence-based prevention of ACL injury. Specialized training that targets modifiable risk factors shows statistical efficacy in high-risk athletes; however, clinically meaningful reduction of risk has not been achieved. A critical barrier that limits successful training outcomes is the requirement of qualified instructors to deliver personalized, intuitive, and accessible feedback to young athletes. Thus, a key gap in knowledge is how to efficiently deliver objective, effective feedback during training for injury prevention. The investiagator's long-term goal is to reduce ACL injuries and the subsequent sequela in young male athletes.


Clinical Trial Description

aNMT integrates biomechanical screening with state-of-the-art augmented reality headsets to display real-time feedback that maps complex biomechanical variables onto simple visual feedback stimuli that athletes "control" via their own movements. The central hypothesis is that aNMT biofeedback will improve joint mechanics in evidence-based measures collected in realistic, sport-specific virtual reality scenarios. Specifically, the purpose of this investigation is to determine the efficacy of aNMT biofeedback to improve high-risk landing mechanics both in a laboratory task and during sport-specific scenarios. Based on the investigator's preliminary data, the investigators hypothesize that aNMT biofeedback will produce greater improvements in localized joint mechanics compared to neuromuscular training that incorporates sham feedback during the drop vertical jump (DVJ) task. In the secondary Aim, the investigators hypothesize aNMT will produce improved localized joint mechanics and global injury risk techniques during sport-specific maneuvers assessed in immersive virtual environments compared to the sham feedback. The expected outcomes will support increased efficiency and enhanced efficacy of feedback for personalized and targeted injury prevention training. The positive impact will be the improvement of injury risk mechanics and the potential to reduce injury on the field of play. A randomized, repeated-measures design will be used to test the two hypotheses for Aim 1: First, that aNMT will produce greater improvements in localized joint mechanics compared to the sham feedback group during the DVJ task; second, based on the preliminary data the investigators expect that innovative aNMT will lead to graduated joint improvements and reduced global injury risk mechanics that will exceed the overall task transferred reductions in high risk biomechanics following 12 real-time biofeedback training sessions. Previously described techniques will be used to measure biomechanical risk factors during a DVJ task performed at the beginning and end of the 6-week pre-competition training period. Athletes will be randomized into one of two groups: 1) aNMT biofeedback or (2) sham (augmented reality glasses with a stimulus that will provide exercise repetition count). Each athlete, as well as the statisticians, will be blinded to the intervention. All athletes will receive 12 training sessions over a 6-week period during their pre-competition season and each of the groups will have longitudinal assessment of biomechanical outcome measures captured at each biofeedback session. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04068701
Study type Interventional
Source Children's Hospital Medical Center, Cincinnati
Contact Kim D Barber Foss, MS
Phone 5136365971
Email kim.foss@cchmc.org
Status Not yet recruiting
Phase N/A
Start date September 2021
Completion date December 2026

See also
  Status Clinical Trial Phase
Recruiting NCT04519801 - BFR Therapy for Post-Op Rehab of ACL Reconstruction With Quadriceps Tendon Autograft N/A
Withdrawn NCT03389685 - Can PRP Reduce Pro-Inflammatory Biomarkers Following ACL Injury Phase 2
Recruiting NCT04958733 - Does Bone Grafting at the Time of Bone-Patellar Tendon-Bone ACL Reconstruction Reduce the Incidence of Post-operative Anterior Knee Pain: A Randomized Controlled Clinical Study N/A
Terminated NCT04101682 - Continuous Vs Single Shot Block After ACL Early Phase 1
Not yet recruiting NCT05374382 - A Prehab Strengthening Program Prior to ACL Surgery on Lower Limb Structure and Function N/A
Recruiting NCT03479775 - Muscle Function and Traumatic Knee Injury in Sports
Not yet recruiting NCT05498285 - Post-ACL Reconstruction Rehab UPSCALER App RCT HPUPM N/A
Recruiting NCT05461625 - ACL Reconstruction With/Without ALL Reconstruction N/A
Active, not recruiting NCT03491046 - Molecular Imaging Assessment of ACL Viability N/A
Withdrawn NCT04342000 - The Effect of Movement Education on Jumping/Landing Quality in High School Athletes N/A
Completed NCT04993339 - Clinical Outcomes of ACL Reconstruction Augmented by an Injectable Osteoconductive/Osteoinductive Compound Phase 3
Withdrawn NCT03614351 - Dietary Protein Intake and Rehabilitation From Anterior Cruciate Ligament Surgery N/A
Withdrawn NCT03670550 - Dynamic ACL Brace: In Vivo Kinematics N/A
Recruiting NCT06206200 - The Effect of Cognitive Dual-task Rehabilitation on Arthrogenic Muscle Responses After ACL Reconstruction N/A
Recruiting NCT06430775 - Exploring Prolonged AMR in ACL Reconstructed Patients
Active, not recruiting NCT06167343 - Comparison of Semitendinosus and Quadriceps Grafts for Anterior Cruciate Ligament Reconstruction N/A
Completed NCT04541940 - TeleRehabilitation Following ACL Reconstruction N/A
Terminated NCT03497780 - Longitudinal Assessment of Cartilage Injury and Remodeling After Anterior Cruciate Ligament Rupture and Reconstruction:
Completed NCT04967937 - Neuromuscular Training Improves Single-Limb Stability N/A
Recruiting NCT04901858 - Knee Aspiration and High Definition MRI for ACL Injury N/A