Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00549406
Other study ID # 2007-PREV-INT-452
Secondary ID CIHR grant# MOP-
Status Completed
Phase Phase 1
First received October 24, 2007
Last updated December 19, 2014
Start date June 2008
Est. completion date February 2012

Study information

Verified date December 2014
Source Sunnybrook Health Sciences Centre
Contact n/a
Is FDA regulated No
Health authority Canada: Canadian Institutes of Health Research
Study type Interventional

Clinical Trial Summary

The ability to maintain balance and avoid falling is highly dependent on the ability to locate objects and architectural features in the environment. This need to continually monitor the environment as one moves about in daily life suggests a critical role for visual attention, gaze control, and spatial memory, all of which are known to decline with aging. In this study, the investigators will test the efficacy of a computer-based visual-training program designed to improve the ability to rapidly extract information from the peripheral visual field. It is expected that older adults involved in the visual training intervention will improve the speed, accuracy, and effectiveness of reach-to-grasp balance-recovery reactions evoked by sudden unpredictable balance perturbation.


Description:

Balance reactions that involve rapidly stepping or reaching to grasp a handrail or other objects for support play a crucial role in preventing us from falling when we lose our balance. However, to recover balance successfully, the central nervous system has to be able to control the stepping or grasping movement to deal with "environmental constraints" (i.e. objects and architectural features that can obstruct stepping or serve as handholds to grasp), and hence must somehow monitor the location of potential constraints as we move about in our daily lives. The need to monitor these environmental features suggests a critical role for visual attention, gaze control, and spatial memory, all of which are known to decline with aging. Although no studies have examined the effects on balance control, it is known that such deficits can impair other motor behaviors such as driving and can be successfully countered using a computer-based "visual training" intervention designed to improve the ability to rapidly extract information from the peripheral visual field (the so-called "Useful Field of View", or UFOV).

The proposed research will use an analogous approach to improve balance control. Specifically, we will test whether: 1) the UFOV® computer-based visual-training program or a commercially available video game leads to improved ability to use peripheral vision to monitor changes in the spatial features of the surrounding environment, and 2) whether such changes in visual processing are associated with improved ability to rapidly reach and grasp a handrail for support, in response to a sudden unpredictable balance perturbation. Older adults with documented deficits in UFOV scores will be randomly assigned to either the visual training (UFOV or video game) or a control group. Each training group will undergo two one-hour sessions per week, for five consecutive weeks. Neither group will be given any information as to which training method is expected to be more beneficial.

Participants in the experimental group will complete either the computerized UFOV® speed-of-processing intervention or the video game training intervention. This UFOV intervention focuses on the ability to quickly identify and locate visual targets presented (for brief time intervals) in the central and peripheral visual fields. The training challenges the participant to identify the target(s) in the briefest display duration possible, within increasingly difficult task conditions. Difficulty of the training task is increased by making it more difficult to identify the central target, decreasing the duration of target presentation time, increasing the number of tasks to complete simultaneously, adding distracters, and increasing the eccentricity (visual angle) of the peripheral targets.

Participants in the video game training group will participate in game play sessions using a cartoon-based action video game with increasing levels of challenge and difficulty.

Participants in the control group will complete timed computerized word puzzles during the training sessions. This cognitive task involves levels of social interaction and computer use similar to the experimental group, but is not expected to yield improvements in ability to rapidly process peripheral visuospatial information.

Balance assessments will be performed immediately before and after completion of the intervention programs. Balance perturbations will be delivered using a large (2x2m) computer-controlled motion platform. Subjects will stand at the center of the platform and a motor-driven moveable handhold system will be mounted to the front wall of the platform. In each trial, the handhold (a 10cm rod) will be controlled to move, intermittently and unpredictably, back and forth along a horizontal axis in the frontal plane, before coming to rest at one of four final locations (corresponding to visual angles of 5, 10, 15, and 20 degrees). The moving platform will deliver a small perturbation a few seconds after the final handhold location is reached. Subjects will be told to grasp the handhold as quickly as possible in response to the platform motion. During each trial, subjects will perform a concurrent visual vigilance task, which requires them to continuously look straight ahead at the center of a computer screen. This task is designed to ensure the subjects rely on peripheral vision to acquire the spatial information needed to direct the hand toward the handhold following the onset of the platform perturbation. The absence of any eye movements toward the grasp location will be confirmed via recordings from a head-mounted eye tracker. A motion-analysis system will be used to determine the speed and accuracy of the grasping reactions.


Recruitment information / eligibility

Status Completed
Enrollment 33
Est. completion date February 2012
Est. primary completion date July 2011
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Both
Age group 64 Years to 80 Years
Eligibility Inclusion Criteria:

- Community dwelling

- Functional mobility (no dependence on mobility aids)

- Impaired visual processing (UFOV divided attention score of 200ms or worse)

Exclusion Criteria:

- Neurological or musculoskeletal disorder

- Cognitive disorder (e.g. dementia)

- Uncorrected visual impairments

- Recurrent dizziness or unsteadiness

Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Single Blind (Outcomes Assessor), Primary Purpose: Treatment


Related Conditions & MeSH terms


Intervention

Procedure:
computerized visual training
two one-hour training sessions per week, for five consecutive weeks
computerized word puzzles
two one-hour sessions per week, for five consecutive weeks
video-game based visual training
two one-hour training sessions per week, for five consecutive weeks

Locations

Country Name City State
Canada Centre for Studies in Aging, Sunnybrook Health Sciences Centre Toronto Ontario

Sponsors (3)

Lead Sponsor Collaborator
Sunnybrook Health Sciences Centre Canadian Institutes of Health Research (CIHR), Ontario Neurotrauma Foundation

Country where clinical trial is conducted

Canada, 

Outcome

Type Measure Description Time frame Safety issue
Primary ability to use peripheral vision to recover balance by grasping a handhold within one week of starting and completing the intervention No
Secondary natural gaze and balance-recovery behavior (in responding to a sudden unpredictable balance perturbation while walking in an unfamiliar environment); clinical balance measures; visual-processing measures within one week of starting and completing the intervention No
See also
  Status Clinical Trial Phase
Recruiting NCT05880862 - Comparative Effectiveness of Initial OAB Treatment Options Among Older Women at High Risk of Falls Early Phase 1
Completed NCT03963570 - The Effectiveness of a Self-managed Digital Exercise Programme to Prevent Falls in Older Community-dwelling People N/A
Recruiting NCT04053829 - Feasibility and Acceptability of HOLOBalance Compared to Standard Care in Older Adults at Risk for Falls N/A
Not yet recruiting NCT04419753 - The Role of Attention Focus Walking Training in Older Adults. N/A
Completed NCT02916849 - A Feasibility Study of a Mobile Application Intervention to Promote Strength and Balance Exercises in Older People N/A
Completed NCT02836587 - The Influence of Balance Training on Postural Control in Elderly N/A
Active, not recruiting NCT02617303 - Prevention of Falls and Its Consequences in Elderly People N/A
Completed NCT01896466 - Enhanced Gait and Balance Training N/A
Completed NCT02570178 - Effectiveness of an Intervention to Improve Balance and Decrease Falls in the Elderly (EWii) N/A
Completed NCT00636675 - CONNECT for Quality: A Study to Reduce Falls in Nursing Homes N/A
Completed NCT00365430 - SAFE or SORRY? Patient Safety Study of the Prevention of Adverse Patient Outcomes N/A
Completed NCT00226486 - Examination and Treatment of Elderly After a Fall N/A
Active, not recruiting NCT00222287 - The Effect of Feldenkrais Lessons on Walking and Balance Phase 1
Recruiting NCT03731572 - Hip Muscle Power, Lateral Balance Function, and Falls in Aging N/A
Recruiting NCT05625828 - Evaluation of the Effects of a Cognitive-Motor Fall Prevention Program on Fall Risk Factors N/A
Recruiting NCT05377801 - Chinese Version of LIVE-LiFE for Older Adults With Previous Falls N/A
Completed NCT01618786 - Flooring for Injury Prevention Trial N/A
Completed NCT02835989 - Community Paramedicine at Home N/A
Recruiting NCT02926105 - Comparison of Home-based Exercise Programmes for Falls Prevention and Quality of Life in Older Adults Phase 3
Completed NCT02569138 - Balance-Enhancing Effects of Insole Hardness and Thickness for Older Adult Footwear N/A