View clinical trials related to Waldenstrom Macroglobulinemia.
Filter by:This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
This phase II trial studies how well sirolimus, cyclosporine and mycophenolate mofetil works in preventing graft-vs-host disease (GVHD) in patients with blood cancer undergoing donor peripheral blood stem cell (PBSC) transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with sirolimus, cyclosporine, and mycophenolate mofetil before and after transplant may stop this from happening.
RATIONALE: Vaccines, such as dendritic cell therapy (DC) made from a person's tumor cells and white blood cells may help the body build an effective immune response to kill tumor cells. Cryosurgery kills cancer cells by freezing them. Giving vaccine therapy together with cryosurgery may kill more tumor cells. PURPOSE: This clinical trial studies giving vaccine therapy together with or without cryosurgery in treating patients with B-cell Non-Hodgkin's lymphoma.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This randomized phase III trial studies how well graft-vs-host disease (GVHD) prophylaxis works in treating patients with hematologic malignancies undergoing unrelated donor peripheral blood stem cell transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant (PBSCT) helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation (TBI) together with fludarabine phosphate (FLU), cyclosporine (CSP), mycophenolate mofetil (MMF), or sirolimus before transplant may stop this from happening.
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
The purpose of this study is to determine the safety, tolerability, maximum tolerated dose and pharmacokinetics of MLN0128 in patients with Relapsed or Refractory Multiple Myeloma or Waldenstrom Macroglobulinemia