View clinical trials related to Torticollis.
Filter by:This study will identify changes that occur in the part of the brain that controls hand movements in patients with cervical (neck) dystonia. Patients with dystonia have muscle spasms that cause abnormal postures while trying to perform a movement. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. The study will compare findings in healthy volunteers and patients with cervical dystonia to learn more about the condition. Healthy volunteers and patients with cervical dystonia 18 years of age and older may be eligible to participate. Candidates are screened with a medical history and physical examination. Participants undergo the following tests: Somatosensory evoked potentials (Visits 1 and 2) This test examines how sensory information travels from the nerves to the spinal cord and brain. An electrode placed on an arm or leg delivers a small electrical stimulus and additional electrodes placed on the scalp, neck and over the collarbone record how the impulse from the stimulus travels over the nerve pathways. Transcranial Magnetic Stimulation (Visits 2, 3 and 4) This procedure maps brain function. A wire coil is held on the scalp. A brief electrical current passes through the coil, creating a magnetic pulse that stimulates the brain. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the subject may hear a click and feel a pulling sensation on the skin under the coil. Nerve conduction studies (Visits 2, 3 and 4) This test measures how fast nerves conduct electrical impulses and the strength of the connection between the nerve and the muscle. Nerves are stimulated through small wire electrodes attached to the skin and the response is recorded and analyzed. Surface electromyography (Visits 2, 3 and 4) Electrodes are placed on the front and back of the neck muscles to measure the electrical activity of the muscles.
The aim of this study is to assess longer term safety and effectiveness of Dysport®.
To evaluate inter-ethnic similarity in pharmacodynamics between Japanese and Caucasian healthy adult male subjects by comparing electrophysiological reactions after administering E2014 to extensor digitorum brevis muscle (EDB).
The aim of this study is to demonstrate the effectiveness and safety of 500 units of Dysport manufactured at a new manufacturing facility in Europe.
The purpose of this study is to provide further information regarding the risks and benefits of Dysport in marketed indications.
The purpose of this study is to investigate the use of injections of Botox (botulinum toxin type A) for the treatment of chronic neck pain. Botox is an approved treatment for patients with cervical dystonia. Cervical dystonia is a chronic condition characterized by involuntary movements of the neck that are often painful. In this study, the response from Botox in patients with neck pain not associated with cervical dystonia will be compared to the pain response in patients with cervical dystonia.
To evaluate efficacy and safety of E2014 (2500U, 5000U, 10000U, placebo) in a multicenter, randomized, double-blind, parallel group comparative study by intramuscularly administering to patients with spasmodic torticollis. Primary endpoint for efficacy evaluation is changes in TWSTRS total scores from baseline measured at Week 4 and the clinical recommended dose will be examined with Williams multiple comparison. For safety evaluation, an inter group comparison (active drug and placebo) will be performed mainly focusing on incidence of adverse events, adverse drug reactions, and abnormal changes in laboratory parameters.
The purpose of this study is to investigate the efficacy and safety of bilateral pallidal stimulation in patients with medically refractory primary cervical dystonia.
The purposes of this study are: - to determine if bilateral pallidal deep brain stimulation results in improvement in neck postures/movements; - to determine if bilateral pallidal deep brain stimulation results in improvement in quality of life; and - to document the adverse effects of surgery in patients with cervical dystonia.
This study will evaluate the effectiveness of deep brain stimulation (DBS) for treating primary dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. Medical therapies are available, but not all patients get adequate relief from the abnormal movements or the pain associated with them. DBS is a surgical procedure that interrupts neuronal circuits in the globus pallidus interna (Gpi) and subthalamic nucleus (STN) - areas of the basal ganglia of the brain that do not work correctly in patients with dystonia. This results in decreased movement and therefore may lessen patients' symptoms and pain. The study will also examine the physiology of dystonia and determine whether the treatment effects of DBS in the Gpi differ significantly from DBS of the STN. Patients 18 years of age and older with primary cervical dystonia that does not respond to medical treatment or botulinum toxin (Botox) may be eligible for this study. Candidates are screened with blood and urine tests, chest x-ray, electrocardiogram, and magnetic resonance imaging (MRI, see below) of the brain. Each participant undergoes the following tests and procedures: - Magnetic resonance imaging. This procedure is done after implantation of the stimulators to verify position of the electrodes. MRI uses a magnetic field and radio waves to produce images of the brain. The patient lies on a table that is moved into the scanner (a narrow cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure usually lasts about 45 to 90 minutes, during which the patient is asked to lie still for up to 15 minutes at a time. - Transcranial magnetic stimulation. This procedure maps brain function. A wire coil is held on the scalp, and a brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the patient may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the patient may hear a click and feel a pulling sensation on the skin under the coil. During the stimulation, electrical activity of muscles is recorded with a computer, using electrodes attached to the skin with tape. - Neurologic evaluation. Before and after DBS, the patient's dystonia is measured with a standardized rating scale called the Toronto Western Spasmodic Torticollis Scale (TWSTRS). - DBS treatment. Patients are randomly assigned to have electrodes implanted in either the Gpi or STN area of the basal ganglia. The electrodes are what stimulate the brain in DBS therapy. Before surgery, a frame is secured to the patient's head, and an MRI scan is done. DBS involves making two small incisions and two small holes in the skull, opening the lining around the brain, locating the Gpi or STN, securing the electrodes in place, and connecting them to the pulse generator that is placed under the skin below the collar bone. In addition, during the surgery, the patient is asked to move certain muscles. The muscle activity is recorded to gain a better understanding of the physiology of movement. After surgery, MRI scans are done to confirm placement of the electrodes. - Stimulation and evaluation. After surgery, patients' movements are evaluated during and after stimulation. The changes in movement and function are videotaped and scored according to a rating scale. The optimal stimulation settings are determined and the stimulators are adjusted accordingly. Neurologic evaluations with the TWSTRS scale are repeated at 1, 2, 3, 6 and 12 months after surgery, and the stimulators are adjusted as needed. Some of the evaluations are videotaped.