Clinical Trials Logo

Subarachnoid Hemorrhage clinical trials

View clinical trials related to Subarachnoid Hemorrhage.

Filter by:

NCT ID: NCT04583163 Recruiting - Stroke Clinical Trials

Variability in Transcranial Doppler Technique in Neuro-Critical Care Patients

Start date: September 22, 2020
Phase:
Study type: Observational

This study aims to determine the inter- and intra-variability of Transcranial Doppler (TCD) ultrasound in neuro-critical care patients who are planned for consecutive daily TCD evaluations.

NCT ID: NCT04567277 Completed - Clinical trials for Subarachnoid Hemorrhage

Early Ventriculo-peritoneal Shunt in Subarachnoid Patients With External Ventricular Drainage

EarlyVPS
Start date: January 2017
Phase: N/A
Study type: Interventional

Acute hydrocephalus is a common complication following subarachnoid hemorrhage (SAH). Early and emergency insertion of external ventricular drain (EVD) is standard treatment of acute post-SAH hydrocephalus. According to the high risk of infection associated with EVD, the study evaluates the outcome of early EVD conversion to ventriculoperitoneal shunt (VPS) in poor-grade SAH patients.

NCT ID: NCT04566991 Recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Deferoxamine In the Treatment of Aneurysmal Subarachnoid Hemorrhage (aSAH)

DISH
Start date: March 20, 2022
Phase: Phase 2
Study type: Interventional

Aneurysmal subarachnoid hemorrhage (aSAH) has a high incidence of mortality and significant morbidity, with mortality exceeding 30% in the first two days.The initial injury is related to increasing intracranial pressure, cerebral edema, and neuronal injuries associated with the release of iron. Iron has been shown to increase the incidence of cerebral edema, ischemia, and formation of hydrocephalus. Deferoxamine mesylate (DFO), a hydrophilic chelator, creates a stable complex with free iron thus preventing the formation of iron related free radicals. This trial will evaluate the safety and efficacy of clinical deferoxamine for the treatment of aSAH for patients that are admitted to the hospital at the University of Michigan or Peking University Health Science Center. Eligible participants will be enrolled and randomized to 1 of 2 doses of Deferoxamine or placebo (saline). Information regarding the patients will be collected and followed for up to 6 months post discharge.

NCT ID: NCT04557618 Recruiting - Clinical trials for Subarachnoid Hemorrhage

Auricular VNS Following Subarachnoid Hemorrhage

Start date: January 5, 2021
Phase: N/A
Study type: Interventional

This study will evaluate whether non-invasive auricular vagal nerve stimulation lowers inflammatory markers, and improves outcomes following spontaneous subarachnoid hemorrhage.

NCT ID: NCT04552873 Recruiting - Clinical trials for Subarachnoid Hemorrhage

Urea Therapy for Hyponatremia in Subarachnoid Hemorrhage

NAT-URE
Start date: December 3, 2020
Phase: N/A
Study type: Interventional

Hyponatremia is defined as a plasma sodium concentration below 135 mmol / L. This is a common occurrence (20-50%) during subarachnoid hemorrhage (SAH). Its appearance is often associated with vasospasm. It is associated with an increase in morbidity and mortality linked to induced neurological disorders. Hyponatremia is caused by two etiologies: the syndrome of inappropriate secretion of anti-diuretic hormone (SIADH), and the cerebral salt wasting syndrome, CSWS. Theoretically, these two entities are differentiated by the patient's volemia; in practice, this parameter is difficult to measure. In addition, the correction of hyponatremia is diametrically opposed according to its mechanism: water restriction in the case of SIADH, sodium intake in the event of CSWS. Urea is offered as a second-line treatment in the event of treatment failure to correct hyponatremia. However, the efficacy of this treatment is based on small, observational, retrospective studies. Moreover, the mechanism of action of urea remains poorly understood: it could be a hyperosmolar effect or passive renal reabsorption of sodium.

NCT ID: NCT04548596 Recruiting - Clinical trials for Traumatic Brain Injury

NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

NOVEL ICP
Start date: September 10, 2014
Phase:
Study type: Observational

This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), and Duke University Medical Center. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

NCT ID: NCT04548401 Recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Effect of Antiplatelet Therapy on Cognition After Aneurysmal Subarachnoid Hemorrhage

Start date: November 1, 2019
Phase:
Study type: Observational

Deficits in memory, executive function, and language are common cognitive sequelae of aneurysmal subarachnoid hemorrhage (aSAH). Previous study demonstrated that post-treatment antiplatelet therapy reduced risk for delayed cerebral ischemia caused by aSAH. However, the effect of antiplatelet therapy on cognition after aSAH is unclear. The aim of this study was to assess the effect of antiplatelet therapy on cognition after aSAH.

NCT ID: NCT04532333 Not yet recruiting - Clinical trials for Subarachnoid Hemorrhage, Aneurysmal

Efficacy and Safety of Bivalirudin Versus Heparin During Coil Embolization in Patients With Ruptured Intracranial Aneurysms

BUILD
Start date: August 2020
Phase: Phase 3
Study type: Interventional

This is a randomized, open label, multi-center, positive-controlled study, in which a total of 236 patients will be enrolled and randomly assigned to receive bivalirudin or heparin in a 1:1 ratio during coil embolization in patients with ruptured intracranial aneurysms. Procedure-related complication, mRS, Activated Clotting Time, ischemic and hemorrhagic complications, symptomatic and asymptomatic intracranial hemorrhage, death, Heparin Induced Thrombocytopenia will be evaluated during procedure, at 24hs, 7days and 30 days after.

NCT ID: NCT04512859 Not yet recruiting - Clinical trials for Subarachnoid Hemorrhage, Aneurysmal

Stellate Ganglion Block in Preventing Cerebral Vasospasm Secondary to Subarachnoid Hemorrhage

Start date: September 1, 2020
Phase: N/A
Study type: Interventional

To investigate whether the stellate ganglion block is helpful in relieving cerebral vasospasm during aneurysmal coil embolism surgery. The effect was assessed by Transcranial Doppler (TCD).

NCT ID: NCT04507178 Recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Improving Outcome in Subarachnoid Hemorrhage wIth Nadroparine

ISCHEMIA
Start date: February 2, 2022
Phase: Phase 2
Study type: Interventional

Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) was long thought to be caused by subarachnoid blood-induced vasospasm. Experimental and clinical evidence suggest activation of several pathophysiological pathways, affecting the cerebral microcirculation. Recently, lower in-hospital mortality and less non-home discharge was reported in patients treated with therapeutic low-molecular weight heparin (LMWH), compared to patients with standard, prophylactic LMWH, pointing towards a potential benefit of higher doses of LMWH in the acute course after aSAH. Treatment with therapeutic LMWH might improve clinical outcome in endovascularly treated aSAH patients. The primary objective is to evaluate whether aSAH patients treated with therapeutic LMWH have a lower 30-day mortality rate compared to patients treated with prophylactic LMWH. Secondary objectives are to evaluate whether there are significant differences between patients treated with therapeutic and prophylactic LMWH in development of DCI, (hemorrhagic) complications during admission, hydrocephalus, non-home discharge location, quality of life, clinical outcome and cognitive functioning at three and six months, total health care costs. A single center, prospective, phase II randomized clinical trial in aneurysmal SAH patients ≥18 years old, in whom the causative aneurysm is treated with endovascular coiling less than 72 hours after initial SAH. Patients are randomized into 2 groups: (1) Therapeutic dose LMWH group: the standard prophylactic dose, administered upon hospital admission, will be replaced by nadroparin s.c. twice daily 5700 IE anti-Xa, starting within 24 hours after coiling and continued until 21 days after ictus of initial SAH. After 21 days, patients will continue with standard care prophylactic dose until discharge or when mobilized for more than 6 hours per day; (2) Control group: standard of care treatment with prophylactic dose of LMWH; nadroparin, s.c. once daily 2850 AxaIU until discharge or when mobilized for at least 6 hours a day. Primary outcome: 30-days' mortality. Secondary outcome: DCI, venous thrombo-embolic complications, occurrence of major and non-major bleeding, hemorrhagic complications after external ventricular/lumbar drain (EVD/ELD) placement and lumbar puncture (LP), other SAH-related complications, shunt-dependent hydrocephalus, discharge location, quality of life, total health care costs, cognitive functioning, clinical outcome.