View clinical trials related to Stage IV Lung Cancer AJCC v8.
Filter by:This phase II trial studies how well ramucirumab and pembrolizumab work in treating EGFR mutant non-small cell lung cancer that has come back (recurrent) or spread to other places in the body (metastatic) while on systemic therapy. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab, a drug which has anti-angiogenic and pleotropic immunomodulatory effects and may synergize with the effect of an anti-PD-1 agent. The study investigates the effect of targeted anti-antitumor activity of immune checkpoint inhibitor pembrolizumab and immune-suppressive activity of VEGF-inhibitor ramicirumab to evaluate the efficacy and the tolerability of the combination.
This phase I trial studies the side effects of atezolizumab, varlilumab, and radiation therapy in treating patients with non-small cell lung cancer that has spread to other places in the body (advanced) and cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies such as atezolizumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies such as varlilumab may induce changes in body?s immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving atezolizumab, varlilumab, and radiation therapy may increase the amount of time the disease is not active or does not spread to another part of the body.
This phase II Lung-MAP non-Match treatment trial studies how well ramucirumab and pembrolizumab work versus standard of care in treating patients with non-small cell lung cancer that is stage IV or has come back. Immunotherapy with monoclonal antibodies, such as ramucirumab and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in standard of care chemotherapy for non-small cell lung cancer, such as docetaxel, gemcitabine hydrochloride, and pemetrexed, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ramucirumab and pembrolizumab together may work better in treating patients with non-small lung cancer compared to standard of care.
This phase II trial studies how well MLN4924 (pevonedistat), carboplatin, and paclitaxel work in treating patients with stage IIIB or IV non-small cell lung cancer. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pevonedistat together with carboplatin and paclitaxel may work better in treating patients with non-small cell lung cancer when compared with other standard chemotherapy drugs.
This phase II Lung-MAP trial studies how well rucaparib works in treating patients with genomic loss of heterozygosity (LOH) high and/or deleterious BRCA1/2 mutation stage IV non-small cell lung cancer or that has come back. Rucaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase Ib trial studies the side effects and best dose of telaglenastat hydrochloride when given together with osimertinib in treating patients with stage IV non-small cell lung cancer and a mutation in the EGFR gene. Telaglenastat hydrochloride and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase III trial studies whether pembrolizumab alone as a first-line treatment, followed by pemetrexed and carboplatin with or without pembrolizumab after disease progression is superior to induction with pembrolizumab, pemetrexed and carboplatin followed by pembrolizumab and pemetrexed maintenance in treating patients with stage IV non-squamous non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as pemetrexed, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. It is not yet known whether giving first-line pembrolizumab followed by pemetrexed and carboplatin with or without pembrolizumab works better in treating patients with non-squamous non-small cell cancer.
This trial will pilot a psychosocial intervention called Conquer Fear Support (CFS) in patients with stage III-IV lung or gynecologic cancer who are experiencing fear of cancer progression. The intervention is adapted from a novel program called "Conquer Fear" which was developed by researchers in Australia. CFS may help in reducing worries, fears, and uncertainty in patients with advanced lung or gynecological cancer.
This National Cancer Institute (NCI)-NRG ALK Protocol phase II trial studies how well a combination of different biomarker/ALK inhibitors work in treating patients with stage IV ALK positive non-squamous non-small cell lung cancer. Lorlatinib, ceritinib, alectinib, brigatinib, ensartinib, and crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as pemetrexed, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether a combination of biomarker/ALK inhibitors or chemotherapy may work better in treating patients with ALK positive non-squamous non-small cell lung cancer.
This trial studies how well online psychosocial intervention works in improving social well-being and support in women who are undergoing treatment for stage I-IV non-small cell lung cancer. Psychosocial intervention techniques, such as mindfulness, compassion, and emotional processing, may improve distress and help patients manage symptoms related to non-small cell lung cancer.