Clinical Trials Logo

Clinical Trial Summary

Background: Site-specific delivery of anti-cancer therapeutics is paramount for both reducing nonspecific toxicities and increasing efficacy of chemotherapeutic agents. Due to their small molecular size and nonspecific mechanisms of action, most conventional chemotherapies result in significant toxicities that limit the effectiveness of treatment and reduce the overall quality of life for cancer patients. Encapsulation of these toxic agents inside lipid-based carrier systems (so-called liposomes) results in passive targeting of the compounds to solid tumors. The preferential delivery of liposomal drugs to solid tumors is mostly due to altered barrier-properties of tumor-associated vessels. This results in both an improved delivery and at the same time a significantly milder toxicity profile. Recently, the specificity of delivery was further increased by attaching monoclonal antibodies or antibody fragments to the surface of liposomes (=immunoliposomes, antibody-linked nanoparticles). Antibody-coated immunoliposomes attach more selectively to antigens expressed on the target cells and they are internalized more efficiently. Furthermore, there is evidence that drug resistance, a major challenge in cancer treatment, may be overcome by such delivery systems. A logical and accessible target, such as EGFR, is overexpressed on a variety of primary human cancer cells and it is involved in signaling pathways that contribute both to tumor initiation and tumor progression. Recently, the investigators have tested immunoliposomes against the epidermal growth factor receptor (EGFR) in a preclinical setting. Based on the preclinical results we have initiated this phase I clinical trial.

Study hypothesis: The investigators hypothesize that anti-EGFR-immunoliposomes selectively deliver cytotoxic compounds to EGFR-overexpressing tumors cells. Specific delivery is supposed to increase efficacy while reducing side-effects of the compound. The primary objective of this phase 1 trial is the determination of the maximum tolerated dose (MTD) for future phase 2 trials of this nanoparticle.


Clinical Trial Description

C225-ILS-DOX

This is a phase 1 trial of anti-EGFR-immunoliposomes, an investigative nanoparticle targeted against EGFR-overexpressing tumor cells. The investigators have constructed anti-EGFR immunoliposomes by using Fab' fragments of the chimeric MAb cetuximab (C225, cetuximab, erbitux™, ImClone Systems Corp., NY, USA; Merck KGaA, Darmstadt, Germany), which were covalently conjugated to the liposome membrane. This approach was designed to provide maximal drug delivery to cancer cells via a receptor-targeted and internalizing drug carrier that is stable, non-immunogenic, long-lived with extended blood and tissue residence times and capable of delivering large payloads of diverse types of drugs.

Based on extensive preclinical studies, the investigators decided to perform a first-in-human clinical trial in patients with EGFR-overexpressing solid tumors who have already received all available standard treatments. The therapeutic compound tested in the trial is C225-ILs-dox, a doxorubicin-loaded anti-EGFR-immunoliposome. Doxorubicin is one of the most active agents in many human tumors, and a high percentage of these malignancies do express EGFR. Therefore, the targeting of doxorubicin to EGFR-expressing tumors via the EGFR-specific antibody C225 should enhance the specificity and efficacy of chemotherapy, while the encapsulation of the cytotoxic drug within pegylated liposomes should at the same time decrease its toxicity.

This is a single center, open study. The aim of the trial is the definition of the maximum tolerated dose (MTD) for future phase 2 studies. Secondary endpoints include the overall response rate, the time-to-progression and the assessment of the pharmakokinetic of the compound. The trials follows a canonical 3+3 design and allows an additional recruitment of up to 6 patients on the dose level defined as the MTD. Planned dose levels are as follows:

Level 1 = 5 mg/m2 Level 2 = 10 mg/m2 Level 3 = 20 mg/m2 Level 4 = 30 mg/m2 Level 5 = 40 mg/m2 Level 6 = 50 mg/m2 Level 7 = 60 mg/m2 Level 8 = 70 mg/m2 Level 9 = 80 mg/m2

At each dose level, 3 patients may be enrolled simultaneously. Escalation to the next higher dose will be allowed after patient 3 of a given dose level has received at least one full cycle of therapy if no dose limiting toxicity (DLT) occured at a given dose level. The decision to enter a next dose level will be made by the study team after reviewing all available toxicity data of the previous groups. A DLT is defined as any grade 4 toxicity, any grade 3 toxicity lasting more than one week or/and febrile neutropenia grade 3 (defined as neutrophils < 1.0 x 10e9/l and fever > 38.5 °C). Nausea, vomiting, anorexia, and alopecia (grade 2) will be excluded as dose limiting toxicities. Similarly, adverse events that are clearly related to the primary tumor, such as progression of disease will not be considered as DLTs. In addition, preexisting toxicities must be taken into account when defining and analyzing DLTs.

Patients will be treated until disease progression but for a maximum of 6 cycles. Patients having completed the treatment phase (24 weeks) and showing complete or partial response as well as stable disease will enter the observation phase of the study. This phase will end 12 months after the last patient has been included. At any time during treatment phase or observation phase, patients with signs of disease progression according to RECIST criteria for reporting results of cancer treatment or having discontinued treatment due to unacceptable toxicity will go off study and be treated at the investigator's discretion. ;


Study Design

Endpoint Classification: Safety Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01702129
Study type Interventional
Source University Hospital, Basel, Switzerland
Contact
Status Completed
Phase Phase 1
Start date January 2007
Completion date March 2010

See also
  Status Clinical Trial Phase
Active, not recruiting NCT00750841 - Study of the Effect of Rifampicin on the Pharmacokinetics (PK) of Multiple Doses of Cediranib in Patients With Solid Tumours Phase 1
Withdrawn NCT05419817 - Pembrolizumab With Sitravatinib in Recurrent Endometrial Cancer and Other Solid Tumors With Deficient Mismatch Repair System Phase 2
Completed NCT02828930 - A Study to Determine the Excretion Balance, Pharmacokinetics, Metabolism and Absolute Oral Bioavailability of a Single Oral Dose of [14C]-Labeled Idasanutlin and an Intravenous Tracer Dose of [13C]-Labeled Idasanutlin in a Single Cohort of Participants With Solid Tumors (Malignancies) Phase 1
Completed NCT01197170 - Hormone Receptor Positive Disease Across Solid Tumor Types: A Phase I Study of Single-Agent Hormone Blockade and Combination Approaches With Targeted Agents to Provide Synergy and Overcome Resistance Phase 1
Completed NCT03258515 - A Study to Investigate the Effect of Single Dose of AZD6094 (600 mg) on Cardiac Repolarization in Healthy Volunteers Phase 1
Terminated NCT03225105 - M3541 in Combination With Radiotherapy in Solid Tumors Phase 1
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Completed NCT01878890 - Phase I Dose Escalation Trial of Efavirenz in Solid Tumours or Non-Hodgkin Lymphoma in Therapeutic Failure. Phase 1
Active, not recruiting NCT05059522 - Continued Access Study for Participants Deriving Benefit in Pfizer-Sponsored Avelumab Parent Studies That Are Closing Phase 3
Active, not recruiting NCT03634982 - Dose Escalation of RMC-4630 Monotherapy in Relapsed/Refractory Solid Tumors Phase 1
Recruiting NCT04685226 - A Phase I/II Clinical Trial of ICP-723 in the Treatment of Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2
Recruiting NCT06036121 - A Study of ADRX-0706 in Select Advanced Solid Tumors Phase 1
Active, not recruiting NCT03258151 - Association of Genetic Polymorphisms With Docetaxel-based Chemotherapy Toxicities in Chinese Solid Tumor Patients
Completed NCT01528046 - Metformin in Children With Relapsed or Refractory Solid Tumors Phase 1
Recruiting NCT05325866 - A Study Evaluating Bemarituzumab in Solid Tumors With Fibroblast Growth Factor Receptor 2b (FGFR2b) Overexpression Phase 1/Phase 2
Recruiting NCT04557449 - Study to Test the Safety and Tolerability of PF-07220060 in Participants With Advance Solid Tumors Phase 1/Phase 2
Terminated NCT02890368 - Trial of Intratumoral Injections of TTI-621 in Subjects With Relapsed and Refractory Solid Tumors and Mycosis Fungoides Phase 1
Completed NCT02759640 - A Phase I Trial of HS-10241 in Solid Tumors Phase 1
Withdrawn NCT01940601 - Pharmacodynamics, Pharmacokinetics, Efficacy and Safety of Balugrastim in Pediatric Patients With Solid Tumors Phase 2