Clinical Trials Logo

Clinical Trial Summary

Aim #1 To investigate the prevalence, risk and correlation of the level of sepsis with mitochondrial dysfunction in sepsis patients Aim 1.1 To investigate the prevalence of mitochondria dysfunction among sepsis patients Aim 1.2 To investigate the risk associated with mitochondrial dysfunction in sepsis patients.

Aim 1.3 To investigate the association between sepsis severity (SOFA scoring system) and the degree of mitochondrial dysfunction Aim #2 To investigate the association of mitochondrial dysfunction in sepsis with ScvO2, lactate and ∆PCO2 Aim 3.1 To investigate the therapeutic efficacy of steroids on the improvement mitochondrial function in sepsis patients Aim 3.2. To investigate the efficacy of steroids on the reduction mortality rate in sepsis patients with norepinephrine-resistant hypotension


Clinical Trial Description

Aim #1 To investigate the prevalence, risk and correlation of the level of sepsis with mitochondrial dysfunction in sepsis patients Aim 1.1 To investigate the prevalence of mitochondria dysfunction among sepsis patients Hypothesis: Most of sepsis patients are affected by mitochondria dysfunction. Since there are many suspected cases of sepsis in the emergency department, mitochondrial function measurements will be collected. After the patients are diagnosed, the degree of mitochondrial function will be reported as a percent among all of sepsis patients.

Aim 1.2 To investigate the risk associated with mitochondrial dysfunction in sepsis patients.

Hypothesis: Some risks other than infection are associated with mitochondrial dysfunction in septic patient.

Since there are many suspected cases of sepsis in the emergency department, mitochondrial function measurements will be collected. After the patients are diagnosed, the degree of mitochondrial function will be reported at intervals. Additionally, the correlation among sex, age, obesity, underlying symptoms, cause of infection, pathogen, onset of fever before emergency department visit, number of organ dysfunction, presence of shock and other hemodynamic parameter will be collected.

Aim 1.3 To investigate the association between sepsis severity (SOFA scoring system) and the degree of mitochondrial dysfunction Hypothesis: The severity of sepsis and organ dysfunction are associated with the severity of mitochondrial dysfunction.

Since there are many suspected cases of sepsis in the emergency department, mitochondrial function measurements will be collected. After the patients are diagnosed, the degree of mitochondrial function will be reported at intervals along with the correlation with the severity of sepsis in SOFA scoring system.

Aim #2 To investigate the association of mitochondrial dysfunction in sepsis with ScvO2, lactate and ∆PCO2 Hypothesis: Persistence of high lactate and extreme change of ScvO2 or ∆PCO2 after sepsis bundle care are associated with severity of mitochondrial dysfunction.

Since patients are suspected of having sepsis with hypoperfusion (1. Blood lactate > 4 mmol/L, 2. Refractory hypotension: after bolus fluid 20 mL/kg and Systolic Blood Pressure still < 90 mmHg or require vasopressor), the sepsis bundle care will be started in the emergency department. The goals of this treatment are 1. A mean arterial pressure of > 65 is achieved by fluid resuscitation and vasopressor, 2. Lactate > 4 mmol/L or ScvO2 > 70 is achieved. After 6 hours following the beginning of resuscitation, blood examination for mitochondrial function, ScvO2 and ∆PCO2 will be determined. The correlation between these physiologic/biomarkers and mitochondrial function will be evaluated.

Aim #3 To investigate the roles of steroid administration on mitochondrial function in sepsis patients (Therapeutic trial) Aim 3.1 To investigate the therapeutic efficacy of steroids on the improvement mitochondrial function in sepsis patients Hypothesis: Steroids administration improve mitochondrial function in norepinephrine-resistant sepsis.

After resuscitation, hypoperfusion in the sepsis patients will be treated by fluid resuscitation and vasopressor. Some groups of patients may be not responsive to this treatment (MAP <65 mmHg), administration of steroids to this group will be blindly randomized (treatment and control group). During resuscitation of septic shock patients with fluid resuscitation and vasopressors, some may not respond to treatment (MAP < 65 mmHg). Patients who have shock refractory to fluid resuscitation and norepinephrine therapy for more than 0.5 mcg/kg/min will be blindly randomized to receive steroid (treatment group) or placebo (control group). Blood samples will be obtained to determine mitochondrial functioning before, at day 1 and day 7 after administration of study medications in both groups.

Aim 3.2. To investigate the efficacy of steroids on the reduction mortality rate in sepsis patients with norepinephrine-resistant hypotension Hypothesis: Steroids improve survival in septic shock patients with norepinephrine-resistant hypotension.

During resuscitation of septic shock patients with fluid resuscitation and vasopressors, some may not respond to treatment (MAP < 65 mmHg). Patients who have shock refractory to fluid resuscitation and norepinephrine administration more than 0.5 mcg/kg/min will be blindly randomized to receive steroid (treatment group) or placebo (control group). Blood samples will be obtained to determine mitochondrial functioning before, at day 1 and day 7 after administration of study medications in both groups. Thirty-day survival will be analyzed by a survival analysis. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03748537
Study type Interventional
Source Chiang Mai University
Contact
Status Completed
Phase N/A
Start date January 1, 2017
Completion date December 31, 2019

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3