Clinical Trials Logo

Clinical Trial Summary

The general hypothesis is that administration of testosterone to healthy, older men for 52 weeks (1 year) following a cycle of 4 weeks of testosterone administration and 4 weeks without testosterone (i.e., monthly cycled regimen) will provide the same gains in muscle strength, muscle mass, and bone density as standard of care (SOC), continuous administration of testosterone for 52 weeks.


Clinical Trial Description

The hypothesis is based on data from our current NIA-funded R01 protocol. The investigators treated older men with weekly intramuscular injections of testosterone enanthate (100 mg) for 4 weeks followed by 4 weeks of placebo injections. This 4-week-on, 4-week-off cycled treatment regimen was repeated for 5 cycles (20 weeks). This group was compared with a group of older men who received SOC weekly intramuscular injections of testosterone enanthate (100 mg) for 20 weeks, and another group who received placebo injections. Our preliminary data showed equal gains over placebo in muscle strength and lean body mass in those who received testosterone for 20 weeks, whether SOC continuous or cycled. Moreover, both groups showed greater bone density and markers of bone formation over placebo. In terms of the anabolic actions of testosterone on skeletal muscle in the older men, the investigators found that continuous and cycled administration of testosterone primarily stimulated muscle protein synthesis for the 20 weeks of the study. Cycled testosterone administration enhanced muscle protein synthesis throughout the full 5 cycles of 20 weeks, with no significant loss in muscle protein synthesis during the off-cycle weeks. Additionally, cycled and continuous testosterone administration reduced serum markers of bone resorption compared with placebo. These exciting findings of the benefits of a cycled testosterone regimen in older men represent a novel therapeutic paradigm over the existing SOC approach of continuous administration. The investigators believe the cycled regimen offers a more safe and efficacious approach to combat sarcopenia and osteoporosis with equal anabolic benefit to muscle and bone with only half the dose of testosterone. Critical to the application of this significant paradigm shift in testosterone administration is to determine whether these effects at 20 weeks can persist for the 52 weeks proposed in this study, which represents a treatment duration applicable to the traditional SOC approach.

Thus, the central hypothesis is that cycled administration of testosterone for 52 weeks in healthy, older men will increase muscle function as determined by muscle strength measurements (Biodex dynamometer), lean body mass (DEXA) and muscle volume (MRI), and bone density (DEXA) similar to SOC continuous testosterone administration. Moreover, the investigators anticipate reduced side effects of testosterone administration in the cycled group since they will receive one half the dose over the 52 weeks. The investigators will test the following specific hypotheses in healthy older adults during 52 weeks of cycled, continuous, or placebo testosterone:

1. Cycled and continuous testosterone will increase muscle strength of upper and lower extremities compared with placebo as determined by Biodex dynamometer assessment.

2. Cycled and continuous testosterone will increase lean body mass and muscle volume compared with placebo as determined by DEXA and MRI.

3. Cycled and continuous testosterone will increase bone density compared with placebo as determined by DEXA. The following specific aims will be tested in a randomized double-blind placebo-controlled trial in healthy, older men (60-75 years) undergoing 52 weeks of cycled, continuous, or placebo testosterone:

1. To determine if cycled and continuous testosterone administration increases muscle strength compared to placebo. 2. To determine if cycled and continuous testosterone administration increases lean body mass and muscle volume compared to placebo. 3. To determine if cycled and continuous testosterone administration increases bone density compared to placebo. Our overall goal is to complete a long-term study to determine whether cycled testosterone achieves the same gains in muscle and bone function in older men as SOC, continuous testosterone administration. If our hypothesis is correct, then the investigators will validate an important paradigm shift in testosterone administration in older men that will help combat the disability of sarcopenia and osteoporosis using half the dose of testosterone of the current SOC approach. This reduction is testosterone dose should lessen the side effects and improve the safety of testosterone administration in healthy older men requiring androgen therapy. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01417364
Study type Interventional
Source The University of Texas Medical Branch, Galveston
Contact
Status Withdrawn
Phase Phase 4
Start date January 2016
Completion date December 2017

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06287502 - Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis N/A
Recruiting NCT05063279 - RELIEF - Resistance Training for Life N/A
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Recruiting NCT06143592 - Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly N/A
Terminated NCT04350762 - Nutritional Supplementation in the Elderly With Weight Loss N/A
Enrolling by invitation NCT05953116 - Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study N/A
Recruiting NCT04028206 - Resistance Exercise or Vibration With HMB for Sarcopenia N/A
Enrolling by invitation NCT03297632 - Improving Muscle Strength, Mass and Physical Function in Older Adults N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A
Completed NCT03234920 - Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation N/A
Recruiting NCT03998202 - Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
Recruiting NCT04717869 - Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
Completed NCT05497687 - Strength-building Lifestyle-integrated Intervention N/A
Completed NCT03119610 - The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity Phase 1/Phase 2
Recruiting NCT05711095 - The Anabolic Properties of Fortified Plant-based Protein in Older People N/A
Recruiting NCT05008770 - Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
Not yet recruiting NCT05860556 - Sustainable Eating Pattern to Limit Malnutrition in Older Adults
Recruiting NCT04545268 - Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance N/A
Recruiting NCT04522609 - Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant N/A
Recruiting NCT03160326 - The QUALITY Vets Project: Muscle Quality and Kidney Disease