Clinical Trials Logo

Clinical Trial Summary

This purpose of this study is to determine the outcomes of the first-known application of robotic therapy in the rehabilitation following rotator cuff repair, using a novel vertical oblique robotic module.


Clinical Trial Description

Musculoskeletal conditions are a leading cause of disability in the United States accounting for more than 130 million patient visits to healthcare providers annually. Rotator cuff tears are one of the most common causes of pain and disability of the upper extremity. Impaired motor control of the shoulder girdle muscles with concomitant instability often exists prior to any surgical procedure. Re-tears and/or attenuation after rotator cuff repairs occur relatively frequently and may compromise the functional result. Loading of the UE during rehabilitation, thus the repair site, following the surgical procedure has been implicated in these complications Conventional shoulder rehabilitation protocols with the human-human interface do not possess the ability to systematically quantify dosing and progression for patients in the subacute stages thus, potentially overloading the repair site. No evidence-based research exists comparing outcomes of specific rehabilitative training protocols in these post-surgical patients. Consensus statements conclude, �a need for clinical trials, and validated outcome measures is essential�.

Advances in robotics technology offer unprecedented opportunities to improve rehabilitation pathways, but until now these technologies have focused primarily on neurological disease. The MIT Newman Laboratory for Biomechanics and Human Rehabilitation upper extremity (UE) robot is an impedance controlled, back-drivable, oblique-vertical vertical robot that has been designed such that it can safely exert controlled, graded forces to move or guide a limb, functioning in passive, active-assistive, active and resistive modes, providing objective data on the motion. A major advantage is its capacity for real-time, graded changes based on patient input, providing stability against random perturbations, increasing or withdrawing assistance and allowing for dose-specific treatment. The vertical robot device has been shown to be safe and well tolerated without any adverse effects such as shoulder pain.

Goal-directed, quantifiable rehabilitation protocols for redevelopment of function through improved range of motion, strength and motor control are lacking in patients with musculoskeletal impairments. The successful robotic-assisted rehabilitation of the acute and chronic, severe impairment provides an impetus for applying this technology to UE musculoskeletal impairments. The ability to objectively control and measure the dosing and progression during the rehabilitation process is a valuable tool in the advancement of evidence�based rehabilitation interventions The proposed pilot clinical trial will determine if 8-weeks of robotic rehabilitation improves the rate and quality of recovery of range of motion, strength, and function following rotator cuff repair compared with a conventional physical therapy rehabilitation protocol. ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00275366
Study type Interventional
Source VA Office of Research and Development
Contact
Status Completed
Phase N/A
Start date July 2005
Completion date December 2007

See also
  Status Clinical Trial Phase
Completed NCT03663036 - Arthroscopic Superior Capsular Reconstruction With Fascia Lata Autograft - Survivorship of the Autograft Analysis N/A
Withdrawn NCT03319784 - Analysis for NSAID VS Corticosteroid Shoulder Injection in Diabetic Patients Phase 4
Suspended NCT03290196 - The Effect of EXPAREL® on Postsurgical Pain, and the Use of Narcotics Phase 4
Active, not recruiting NCT03091075 - Oxandrolone Rotator Cuff Trial N/A
Completed NCT03380533 - Buprenorphine Transdermal Patches in Arthroscopic Rotator Cuff Repair Phase 2/Phase 3
Completed NCT04566939 - A Long Term Follow-Up of Rotator Cuff Tear Patients Treated With Integrated Complementary and Alternative Medicine
Active, not recruiting NCT02716441 - Rotator Cuff Failure With Continuity
Completed NCT03540030 - Opioid-Free Shoulder Arthroplasty Phase 4
Completed NCT02298023 - Treatment of Tendon Injury Using Allogenic Adipose-derived Mesenchymal Stem Cells (Rotator Cuff Tear) Phase 2
Completed NCT02850211 - A Selective COX-2 Inhibitor Provides Pain Control But Hinders Healing Following Arthroscopic Rotator Cuff Repair Phase 4
Completed NCT01459536 - Assessment of Muscle Function and Size in Older Adults With Rotator Cuff Tear N/A
Completed NCT01383239 - Impact of Postoperative Management on Outcomes and Healing of Rotator Cuff Repairs N/A
Terminated NCT00936559 - Study Evaluating Safety Of BMP-655/ACS As An Adjuvant Therapy For Rotator Cuff Repair Phase 1
Completed NCT01204606 - Arthroscopic Rotator Cuff Repair With Multimodal Analgesia(MMA) N/A
Completed NCT01170312 - Arthroscopic Surgery and Platelet Rich Plasma In Rotator Cuff Tear Evaluation N/A
Completed NCT00852657 - Comparison of Tendon Repair and Physiotherapy in the Treatment of Small and Medium-sized Tears of the Rotator Cuff N/A
Active, not recruiting NCT00182299 - An RCT to Compare the Outcomes of Patients With Large Rotator Cuff Repair That Undergo Repair With or Without SIS Phase 4
Recruiting NCT06120998 - Quality of Life After Arthroscopic Rotator Cuff Repair
Completed NCT05897866 - Sayed Issa's Hybrid Shoulder Arthroscopic-Open Surgical Management (HSSM) N/A
Completed NCT02644564 - Early Clinical Examination and Ultrasonography Screening of Acute Soft Tissue Shoulder Injuries N/A