Clinical Trials Logo

Clinical Trial Summary

RV dysfunction has been associated with increased mortality in the ICU and cardiac surgical patients. Thus, early identification of RV dysfunction at less severe stages will allow for earlier intervention and potentially better patient outcomes. However, so far, no studies have reported prospectively the prevalence of abnormal RV pressure waveform during cardiac surgery and in the ICU. Our primary hypothesis is that the prevalence of abnormal RV pressure waveform occurs in more than 50% of cardiac surgical patients throughout their hospitalization. Those patients with abnormal RV pressure waveform will be more prone to post-operative complications related to RV dysfunction and failure in the OR and ICU.


Clinical Trial Description

The pulmonary artery catheter (PAC) consists of an intravenous device placed in the pulmonary artery to measure cardiac output, pulmonary artery pressures (Richard C, 2011) as well as cardiac filling pressures. Since its initial presentation by Swan in 1970 (H J Swan, 1970), several modifications were made on the initial catheter now allowing continuous assessment of cardiac output, continuous monitoring of stroke volume (SV), systemic vascular resistance (SVR) and mixed venous saturation (SvO2) (Arora, 2014) (H J Swan, 1970) (Richard C, 2011). We intend to enhance current Swan-Ganz catheters with clinical decision support tools to early identify hemodynamically unstable states that can lead to further deterioration of the patient's health state. Right ventricular (RV) dysfunction is mostly associated to a decrease in contractility, right ventricular pressure overload or right ventricular volume overload (François Haddad, 2008). RV dysfunction can occur in several clinical scenarios in the intensive care unit (ICU) and operating room (OR): pulmonary embolism, acute respiratory distress syndrome (ARDS), septic shock, RV infarction, and in pulmonary hypertensive patients undergoing cardiac surgery (François Haddad, 2008). RV dysfunction has been associated with increased mortality in the ICU and cardiac surgical patients (André Y. Denault, 2006) (Denault AY B. J.-S., 2016). Thus, early identification of RV dysfunction at less severe stages will allow for earlier intervention and potentially better patient outcomes. Unfortunately, identifying which patients will develop RV dysfunction and then progress towards RV failure have proven difficult. One of the reasons for delaying the diagnosis of RV dysfunction could be the lack of uniform definition, especially in the perioperative period. Echocardiographic definitions of RV dysfunction have been described in previous studies: RV fractional area change (RVFAC) < 35 %, tricuspid annular plane systolic excursion (TAPSE) < 16 mm, tissue Doppler S wave velocity <10 cm/s, RV ejection fraction (RVEF) <45% and RV dilation have been related to RV dysfunction (Rudski LG, 2010). However, these echocardiographic indices cannot be continuously monitored and are insufficient in describing RV function. The diagnosis of fulminant RV failure is more easily recognized as a combination of echocardiographic measures, compromised hemodynamic measures and clinical presentation (Raymond M, 2019) (François Haddad, 2008) (Haddad F, 2009). RV dysfunction is inevitably associated with absolute or relative pulmonary hypertension because of the anatomic and physiological connection between the RV and pulmonary vascular system (Naeije R, 2014) (François Haddad, 2008). The gold standard for measuring pulmonary pressure is still the pulmonary artery catheter. However, RV output can initially be preserved despite of pulmonary hypertension (Denault AY C. M., 2006). It is therefore mandatory that early, objective, continuous, easily obtainable and subclinical indices of RV dysfunction are found and validated to initiate early treatment of this disease. Since 2002, Dr Denault's group at Montreal Heart Institute has been using continuous RV pressure waveform monitoring initially for the diagnosis of RV outflow tract obstruction (Denault A, 2014) and then for RV diastolic dysfunction evaluation (St-Pierre P, 2014) (Myriam Amsallem, 2016). Preliminary data based on a retrospective study on 259 patients found that 110 (42.5%) patients had abnormal RV gradients before cardiopulmonary bypass (CPB).Abnormal RV diastolic pressure gradient was associated with higher EuroSCORE II (2.29 [1.10-4.78] vs. 1.62 [1.10-3.04], p=0.041), higher incidence of RV diastolic dysfunction using echocardiography (45 % vs. 29 %, p=0.038), higher body mass index (BMI) (27.0 [24.9-30.5] vs. 28.9 [25.5-32.5], p=0.022), pulmonary hypertension (mean pulmonary artery pressure (MPAP) > 25 mmHg) (37 % vs. 48 %, p=0.005) and lower pulmonary artery pulsatility index (PAPi) (1.59 [1.19-2.09] vs. 1.18 [0.92-1.54], p<0.0001). Patients with abnormal RV gradient had more frequent difficult separation from CPB (32 % vs. 19 %, p=0.033) and more often received inhaled pulmonary vasodilator treatment before CPB (50 % vs. 74 %, p<0.001). However, this was retrospective and limited to the pre-CPB period. In 2017, in a review article on RV failure in the ICU (Hrymak C, 2017), RV pressure waveform monitoring using the paceport of the pulmonary artery catheter was recommended as a simple method of monitoring RV function (Rubenfeld GD, 1999). However, no studies have reported prospectively the prevalence of abnormal RV pressure waveform during cardiac surgery and in the ICU. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04782154
Study type Observational
Source Montreal Heart Institute
Contact
Status Completed
Phase
Start date August 9, 2021
Completion date April 1, 2022

See also
  Status Clinical Trial Phase
Terminated NCT04115735 - His Bundle Recording From Subclavian Vein
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Completed NCT05563701 - Evaluation of the LVivo Image Quality Scoring (IQS)
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT04037436 - Functional Exercise and Nutrition Education Program for Older Adults N/A
Recruiting NCT04703842 - Modulation of SERCA2a of Intra-myocytic Calcium Trafficking in Heart Failure With Reduced Ejection Fraction Phase 1/Phase 2
Terminated NCT05594940 - Heart Failure Monitoring With a Portable Ultrasound Device With Artificial Intelligence Assisted Tools: A Multi-Phase Observational Feasibility Study
Recruiting NCT04982081 - Treating Congestive HF With hiPSC-CMs Through Endocardial Injection Phase 1
Completed NCT04394754 - Evaluating Efficacy of Digital Health Technology in the Treatment of Congestive Heart Failure N/A
Active, not recruiting NCT01385176 - Neural Cardiac Therapy for Heart Failure Study (NECTAR-HF) N/A
Not yet recruiting NCT05516290 - Evaluating Clinical Trial Experiences of Individuals With Congestive Heart Failure
Completed NCT02885636 - Inhaled Beta-adrenergic Agonists to Treat Pulmonary Vascular Disease in Heart Failure With Preserved EF (BEAT HFpEF): A Randomized Controlled Trial Phase 3
Terminated NCT02788656 - Pulmonary Artery Pressure Reduction With ENTresto (Sacubitril/Valsartan) Phase 4
Terminated NCT02205411 - Clinical Trial to Evaluate the the ReliantHeart HeartAssist 5® VAD System in Patients Awaiting Heart Transplantation N/A
Completed NCT02252757 - Assess Measurements of Wireless Cardiac Output Device N/A
Completed NCT01362855 - Advance Care Planning Evaluation in Hospitalized Elderly Patients
Withdrawn NCT00346177 - Stem Cell Study for Patients With Heart Failure Phase 2
Completed NCT01476995 - Prognostic Indicators as Provided by the EPIC ClearView N/A
Active, not recruiting NCT01058837 - SCD-HeFT 10 Year Follow-up N/A
Completed NCT00957541 - Evaluation of a Diagnostic Feature in a Cardiac Resynchronization Therapy (CRT) Device Phase 2