View clinical trials related to Respiratory Insufficiency.
Filter by:The novel SARS-CoV-2 virus has quickly spread worldwide, with substantial morbidity and mortality. There is very limited understanding of the short- and longer-term inflammatory/immunological and clinical course. However, the investigators expect survivors from severe COVID-19 to experience persistent functional impairments, as demonstrated in prior studies of patients with acute respiratory distress syndrome (ARDS) and other acute viral illnesses. Notably, however, few studies have ever investigated the biologic mechanisms underlying these functional impairments. Understanding these features of COVID-19 will improve the ability to design acute therapies and recovery-focused interventions. To address these knowledge gaps, the investigators propose a two-center, 225 patient longitudinal prospective cohort study of hospitalized COVID-19 patients with acute respiratory failure. Researchers will perform an in-depth evaluation of inflammatory/immunological biomarkers, and physical, pulmonary, and neuropsychological clinical outcomes during hospitalization, and over 3-, 6-, and 12-month follow-up.
A phase 2/3, randomized, double blind, placebo-controlled study to evaluate the efficacy and the safety of ABX464 in treating inflammation and preventing acute respiratory failure in patients aged ≥65 and patients aged ≥18 with at least one additional risk factor who are infected with SARS-CoV-2 (the MiR-AGE study).
The aim of the present study is to examine whether cerebral oxygenation could be a more useful parameter than peripheral oxygen saturation to guide clinical titration of permissive hypoxemia in COVID-19 ARDS patients
The aim of the study was to assess the effect of volume targeted vs. pressure-controlled mechanical ventilation (MV) on circulatory parameters and cerebral oxygenation in the extremely preterm infants.
Prone position (PP) has been proved to be effective in severe ARDS patients. On the other hand, High flow nasal cannula (HFNC) may prevent intubation in hypoxemic Acute respiratory failure (ARF) patients. Our hypothesis is that the combination of PP and HFNC in patients with COVID19 induced ARDS may decrease the need of mechanical ventilation. Primary outcome: Therapeutic failure within 28 days of randomization (death or intubation). Secondary outcomes: to analyze PP feasibility and safety in HFNC patients and to analyze effectiveness in terms of oxygenation. Methods: multicentric randomized study including patients with COVID19 induced ARDS supported with HFNC. Experimental group will received HFNC and PP whereas observation group will received standard care. Optimization of non-invasive respiratory management of COVID19 induced ARDS patients may decrease the need of invasive mechanical ventilation and subsequently ICU and hospital length of stay.
The containment associated with the VIDOC-19 pandemic creates an unprecedented societal situation of physical and social isolation. Our hypothesis is that in patients with chronic diseases, confinement leads to changes in health behaviours, adherence to pharmacological treatment, lifestyle rules and increased psychosocial stress with an increased risk of deterioration in their health status in the short, medium and long term. Some messages about the additional risk/danger associated with taking certain drugs in the event of COVID disease have been widely disseminated in the media since March 17, 2020, the date on which containment began in France. This is the case, for example, for corticosteroids, non-steroidal anti-inflammatory drugs but also for converting enzyme inhibitors (ACE inhibitors) and angiotensin II receptor antagonists (ARBs2). These four major classes of drugs are widely prescribed in patients with chronic diseases, diseases specifically selected in our study (corticosteroids: haematological malignancies, multiple sclerosis, Horton's disease; ACE inhibitors/ARAs2: heart failure, chronic coronary artery disease). Aspirin used at low doses as an anti-platelet agent in coronary patients as a secondary prophylaxis after a myocardial infarction can be stopped by some patients who consider aspirin to be a non-steroidal anti-inflammatory drug. Discontinuation of this antiplatelet agent, which must be taken for life after an infarction, exposes the patient to a major risk of a new cardiovascular event. The current difficulty of access to care due to travel restrictions (a theoretical limit in the context of French confinement but a priori very real), the impossibility of consulting overloaded doctors, or the cancellation of medical appointments, medical and surgical procedures due to the reorganization of our hospital and private health system to better manage COVID-19 patients also increases the risk of worsening the health status of chronic patients who by definition require regular medical monitoring. Eight Burgundian cohorts of patients with chronic diseases (chronic coronary artery disease, heart failure, multiple sclerosis, Horton's disease, AMD, haemopathic malignancy, chronic respiratory failure (idiopathic fibrosis, PAH) haemophilia cohort) will study the health impact of the containment related to the COVID-19 pandemic.
This was a randomized, double-blind, placebo-controlled Phase 2/3 study to evaluate the safety and efficacy of dociparstat sodium in adult patients with acute lung injury (ALI) due to Coronavirus Disease 2019 (COVID-19). This study was designed to determine if dociparstat sodium could accelerate recovery and prevent progression to mechanical ventilation in patients severely affected by COVID-19.
Aim. The emerging outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Beside the prescription of some promising drugs as chloroquine, azithromycin, antivirals (lopinavir/ritonavir, darunavir/cobicistat) and immunomodulating agents (steroids, tocilizumab), in our patients with mild to moderate pneumonia due to SARS-CoV-2 we planned a randomize study to evaluate, respect the best available therapy (BAT), the use of autohemotherapy treatement with an oxygen/ozone (O3) gaseous mixture as adjuvant therapy. Design. Multicentric, randomized study. Participants. Clinical presentations are based upon clinical phenotypes identified by the Italian Society of Emergency and Urgency Medicine (SIMEU - Società Italiana di Medicina di Emergenza-Urgenza) and patients that meet criteria of phenotypes 2 to 4 were treat with best available therapy (BAT), and randomized to receive or not O3-autohemotherapy. Main outcome measures. The end-point were the time of respiratory improvement and earlier weaning from oxygen support: these parameters were included in the SIMEU clinical phenotypes classification.
Ophthalmologic damages secondary to COVID-19 coronavirus infection are little described. The ocular involvement is probably multiple, ranging from pathologies of the anterior segment such as conjunctivitis and anterior uveitis to disorders that threaten vision such as retinitis or optic neuropathy. On the other hand, in addition to this impairment, when patients are hospitalized for acute respiratory failure, complications related to possible resuscitation, medication prescriptions, positioning and oxygenation. COVID-19 itself, has several components: - An apoptotic action of the viral attack which will generate cellular destruction, whether pulmonary, cardiac or renal or maybe ocular - A secondary autoimmune action with the development of major vascular inflammation, possibly reaching the retinal, choroidal, and optic nerve vessels. A secondary "hyper" inflammatory syndrome with flashing hypercytokinemia and multi-organ decompensation is described in 3,7% to 4 ,3% of severe cases. - A thromboembolic action
Coronavirus disease 2019 (COVID-19) is a disease caused by a novel coronavirus called SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The most characteristic symptom of patients with COVID-19 is respiratory distress, leading to inability to sustain spontaneous breathing. In addition, patients with COVID-19 have dyspnea and respiratory muscle fatigue. Therefore, it is necessary to use strategies that minimize the impact of COVID-19 on the respiratory muscles, accelerating the ventilatory weaning process and optimizing the functional capacity of the involved muscles. Over the past years, evidence has shown the effectivity of photobiomodulation therapy (PBMT) combined with static magnetic field (sMF) (PBMT/sMF) in delaying muscle fatigue, decrease in markers of inflammatory damage and oxidative stress of skeletal muscle. These effects result in an improvement in the functional capacity of the irradiated muscles by PBMT/sMF. However, do date, there is a lack of evidence regarding the effects of PBMT/sMF on the respiratory muscles. Therefore, the irradiation of PBMT/sMF may result in improvement in the functional capacity of respiratory muscles in patients with COVID-19, accelerating the ventilatory weaning process of the patients intubated due to respiratory failure. In addition, the irradiation of PBMT/sMF may induce the increase of anti-inflammatory mediators' activity in patients with COVID-19. Thus, the aim of this project is to investigate the effects of PBMT/sMF on respiratory muscles of patients admitted to the Intensive Care Unit (ICU) with COVID-19 using invasive mechanical ventilation.