View clinical trials related to Recurrent Ovarian Carcinoma.
Filter by:This phase I trial studies the side effects and best dose of veliparib when given together with radiation therapy in treating patients with advanced solid malignancies (abnormal cells divide without control and can invade nearby tissues) with peritoneal carcinomatosis, epithelial ovarian, fallopian, or primary peritoneal cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x rays to kill tumor cells. Giving veliparib with radiation therapy may kill more tumor cells.
This randomized phase II trial studies the side effects and how well giving paclitaxel with or without viral therapy works in treating patients with ovarian epithelial, fallopian tube, or primary peritoneal cancer that has come back. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them spreading. Viral therapy may be able to kill tumor cells without damaging normal cells. Giving paclitaxel together with viral therapy may kill more tumor cells.
This phase II trial is studying the side effects and how well RO4929097 works in treating patients with recurrent and/or metastatic epithelial ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and the best dose of veliparib when given together with pegylated liposomal doxorubicin hydrochloride in treating patients with ovarian cancer, fallopian tube cancer, or primary peritoneal cancer that has come back after a period of improvement, or breast cancer that has spread to other parts of the body. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as liposomal doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib together with liposomal doxorubicin hydrochloride may kill more tumor cells.
This phase I clinical trial is studying the side effects and best dose of giving gamma-secretase inhibitor RO4929097 and cediranib maleate together in treating patients with advanced solid tumors. Gamma-secretase inhibitor RO4929097 and cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate also may stop the growth of tumor cells by blocking blood flow to the tumor.
This phase II trial studies the side effects and how well EGEN-001 works in treating patients with ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that is persistent or has come back. Biological therapies, such as EGEN-001, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing.
This randomized phase III trial studies carboplatin given together with paclitaxel with or without bevacizumab to see how well it works compared with oxaliplatin given together with capecitabine with or without bevacizumab as first-line therapy in treating patients with newly diagnosed stage II-IV, or recurrent (has come back) stage I epithelial ovarian or fallopian tube cancer. Drugs used in chemotherapy, such as carboplatin, paclitaxel, oxaliplatin, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, may block tumor growth in different ways by targeting certain cells. It is not yet known which regimen of combination chemotherapy given together with or without bevacizumab is more effective in treating epithelial ovarian cancer or fallopian tube cancer.
This phase I trial studies the side effects and best dose of intraperitoneal bortezomib when given together with intraperitoneal carboplatin in treating patients with ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that is persistent or has come back. Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bortezomib may help carboplatin work better by making tumor cells more sensitive to the drug. Infusing bortezomib and carboplatin directly into the abdomen (intraperitoneal) may kill more tumor cells.
This phase II trial studies how well rilotumumab works in treating patients with ovarian epithelial, fallopian tube, or primary peritoneal cancer that has failed to respond to other therapies (persistent) or has returned after a period of improvement (recurrent). Rilotumumab is a type of drug called a monoclonal antibody, and may interfere with the ability of tumor cells to grow and spread by targeting certain cells and blocking them from working.
This phase I/II trial studies the side effects and best dose of veliparib and topotecan hydrochloride and to see how well they work in treating patients with solid tumors, ovarian cancer that has come back or does not respond to treatment, or primary peritoneal cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib with chemotherapy may kill more tumor cells.