View clinical trials related to Preleukemia.
Filter by:RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, stimulate the immune system in different ways and stop cancer cells from growing. PURPOSE: This phase I trial is studying the side effects of cellular adoptive immunotherapy in treating patients with acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndromes that relapsed after donor stem cell transplant.
This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.
RATIONALE: Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells that have been treated in the laboratory after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus before and after transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects and best dose of donor lymphocytes when given after alemtuzumab and combination chemotherapy in treating patients who are undergoing donor stem cell transplant for hematologic cancer.
This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with relapsed or refractory solid tumors or myelodysplastic syndromes. Lenalidomide may stop the growth of solid tumors or myelodysplastic syndromes by blocking blood flow to the cancer. It may also stimulate the immune system in different ways and stop cancer cells from growing.
The purpose of this study is to determine if azacitidine, combined with Best Supportive Care (BSC), is effective in treating myelodysplastic syndromes (MDS) when given according to a different doses and dosing schedules.
Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. This phase I trial is studying the side effects and best dose of tipifarnib in treating patients with relapsed or refractory acute myeloid leukemia
MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MS-275 together with azacitidine may kill more cancer cells. This phase I trial is studying the side effects and best dose of MS-275 when given together with azacitidine in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia.
Phase I trial to study the effectiveness of SB-715992 in treating patients who have acute leukemia, chronic myelogenous leukemia, or advanced myelodysplastic syndromes. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop cancer cells from dividing so they stop growing or die
RATIONALE: Drugs used in chemotherapy, such as amifostine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well amifostine works in treating young patients with newly diagnosed de novo myelodysplastic syndromes.
This phase I trial is studying the side effects and best dose of tanespimycin when given with cytarabine in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndromes. Drugs used in chemotherapy, such as tanespimycin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Tanespimycin may also help cytarabine kill more cancer cells by making cancer cells more sensitive to the drug. Giving tanespimycin together with cytarabine may kill more cancer cells.