View clinical trials related to Pneumonia.
Filter by:This phase III trial compares low dose whole lung radiation therapy to best supportive care plus physicians choice in treating patients with COVID-19 infection. Low dose whole lung radiation therapy may work better than the current best supportive care and physician's choice in improving patients' clinical status, the radiographic appearance of their lungs, or their laboratory blood tests.
This study aimed to evaluate pathogenic microorganisms in adult severe pneumonia patients in different cities of Liaoning Province
The study aims to evaluate MN-166 (ibudilast) in patients with COVID-19 who are at risk of developing acute respiratory distress syndrome. Subjects will be screened, randomly assigned to MN-166 or placebo groups, receive study drug on Days 1-7, and followed up on Day 14 and Day 28.
To build simple and reliable predictive scores for intensive care admissions and deaths in COVID19 patients. These scores adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guidelines. The outcomes of the study are (i) admission in the Intensive Care Unit admission and (ii) death. All patients admitted in the Emergency Department with a positive reverse transcriptionâpolymerase chain reaction SARS-COV2 test were included in the study. Routine clinical and laboratory data were collected at their admission and during their stay. Chest X-Rays and CT-Scans were performed and analyzed by a senior radiologist. Generalized Linear Models using a binomial distribution with a logit link function (R software version X) were used to develop predictive scores for (i) admission to ICU among emergency ward patients; (ii) death among ICU patients. A first panel of Number Models with the highest AIC (BIC) was preselected. Ten-fold cross-validation was then used to estimate the out-of-sample prediction error among these preselected models. The one with the smallest prediction error was in the end singled out .
Radiotherapy in low doses (30 to 100 cGy) was a popular treatment of viral pneumonias until 1940s. Low dose radiation therapy (LDRT) could possibly reduce the inflammation and prevent the cytokine storm thus mitigating the severity of pneumonitis. This is a single arm study designed to assess the feasibility and clinical efficacy of low dose radiation therapy (70 cGy in single fraction) in the patients with COVID-19 pneumonia. A total of 10 eligible patients (as per inclusion criteria) will be recruited and response will be assessed based on the symptomatic improvement or deterioration by using the National Early Warning Score (NEWS). The NEWS score will be recorded on baseline and then on Day 3, Day 7 and Day 14.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused mass mortality in the last 3 months that necessitates urgent development of new therapeutical agents. So far there is no effective anti-viral drug to reduce viral load that has critical importance to prevent progress into severe viral pneumonia and systemic hyper inflammation state. This project is to offer a biologic agent based on T cell derived exosomes. This is a novel approach using our proprietary protocols for drug development. This clinical trial is to test the safety and efficacy of this new agent following targeted delivery by metered dose inhaler. The project have received proper approvals from the Turkish Ministry of Health and Erciyes University, Kayseri Turkey. Turk-Patent Application Number: PCT/TR2020/050302
To report the possible role of S.B 8.4% in the treatment of COVID-19pneumonia.
The outbreak of coronavirus disease 2019 (COVID-19) at the end of 2019 has seen numerous patients experiencing severe acute lung injury (ALI), which developed into severe respiratory distress syndrome (ARDS). The mortality was as high as 20% -40%. Due to the lack of effective antiviral treatments, supporting treatment is the predominant therapy for COVID-19 pneumonia. Its cure is essentially dependent on the patient's immunity. While the immune system eliminates the virus, numerous inflammatory cytokines are produced and a cytokine storm occurs in severe cases. Mesenchymal stem cells (MSCs) play an important role in injury repair and immune regulation, showing advantageous prospects in the treatment of COVID-19 pneumonia. MSCs prevent cytokine storms by retarding the TNF-α pathway, alleviate sepsis by modulating macrophages, neutrophils, NK cells, DC cells, T lymphocytes and B lymphocytes. After infused, MSCs aggregate in the lungs, improve the lung microenvironment, protect alveolar epithelia, and improve pulmonary fibrosis and pulmonary function.
In light of its high morbidity and mortality, COronaVIrus Disease 19 (COVID-19) pandemic spread is considered an unprecedented global health challenge. Given the very limited therapeutic options available against Severe Acute Respiratory Syndrome - CoronaVirus-2 (SARS-CoV-2) epidemic at this time, the evaluation of new resources, designed in the first instance for other pathologies but potentially active against COVID-19, represents a priority in clinical research. This is an observational, retrospective, non-profit study on the adjuvant use of bacteriotherapy in the early control of disease progression in patients affected by COVID-19 and treated with the current standard of care on the basis of the interim guidelines of the Italian Society of Infectious and Tropical Diseases. The main purpose of the study is to evaluate the effectiveness of bacteriotherapy in reducing the clinical impact of acute diarrhea, containing the progression of COVID-19 and preventing the need for hospitalization in intensive care units.
This study is a Phase 1 / 2 trial to determine the safety and efficacy of CYNK-001, an immunotherapy containing Natural Killer (NK) cells derived from human placental CD34+ cells and culture-expanded, in patients with moderate COVID-19 disease.