Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02628301
Other study ID # DC2014DES001
Secondary ID
Status Completed
Phase N/A
First received March 10, 2015
Last updated July 25, 2017
Start date April 2015
Est. completion date May 30, 2017

Study information

Verified date July 2017
Source VU University Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study aims to elucidate the role of the microcirculation in the development of whole body insulin resistance. The investigators hypothesize that impaired insulin signaling in the vasculature is an early phenomenon in the development of whole body insulin resistance. Furthermore, the investigators aim to identify improvement of microvascular function as a potential target in diabetes prevention and treatment.


Description:

In today's society, food availability grossly exceeds our body's caloric demands. Excessive caloric intake causes weight gain and induces insulin resistance, a common characteristic of obesity and major risk factor for type 2 diabetes (T2DM) and cardiovascular disease.

The primary targets of insulin action are skeletal muscle, adipose tissue and the liver, but recent data point to the vascular endothelium as an important target. Insulin directly targets the endothelial cell where it activates phosphoinositide 3-kinase, resulting in Akt-mediated phosphorylation of endothelial nitric oxide synthase (eNOS). This leads to NO production - a potent vasodilator in the human body. Simultaneously insulin also activates the mitogen-activated protein kinase pathway in endothelial cells, which enhances the generation of the vasoconstrictor endothelin-1 via extracellular signal-regulated kinases 1/2 signaling. Via these two pathways insulin can regulate vascular tone.

In healthy individuals, insulin signaling in the endothelial cell leads to capillary recruitment in skeletal muscle tissue via vasodilatation of terminal arterioles. It has been proposed that insulin in this matter regulates the delivery of insulin and glucose to skeletal muscle by increasing endothelial surface area. In obese individuals and patients with T2DM, insulin-mediated capillary recruitment in skeletal muscle tissue is impaired and insulin-dependent glucose uptake is diminished. Whether these two processes are linked or occur in parallel remains unknown.

Interestingly, studies in rodents demonstrated that during obesity induced by high fat feeding, insulin resistance develops in the vasculature before these responses are detected in muscle, liver, or adipose tissue. Therefore, insulin signaling in endothelium might change in response to a positive energy balance to prevent nutrient overload in muscle and optimize nutrient storage in adipose tissue. Conversely, it has been hypothesized that early reversal of endothelial insulin resistance could prevent peripheral insulin resistance, assuming a cause-and-effect relationship between these processes. The most compelling evidence for this hypothesis came from studies in endothelial cell specific insulin receptor substrate-2 (IRS-2) knock-out mice. Kubota et al. demonstrated that impaired insulin signaling in endothelial cells, due to reduced IRS-2 expression and insulin-induced eNOS phosphorylation, caused attenuation of insulin-induced capillary recruitment and insulin delivery, which reduced glucose uptake by skeletal muscle. Moreover, restoration of insulin-induced eNOS phosphorylation in endothelial cells by infusion of beraprost sodium - a stable prostaglandin analogue - completely reversed the reduction in capillary recruitment and insulin delivery in tissue-specific knockout mice lacking IRS-2 in endothelial cells and fed a high-fat diet. As a result, glucose uptake by skeletal muscle was restored in these mice.

These data suggest that pharmacological stimulation of tissue perfusion may hold promise as a therapeutic strategy to increase whole body glucose disposal and thus prevent or reduce hyperglycaemia. In humans however, data linking improvement of capillary recruitment by pharmacological agents to restoration of whole-body glucose uptake are lacking. Low dose iloprost infusion - another stable prostaglandin analogue - has been shown to improve insulin-stimulated whole-body glucose uptake, but the mechanistic role of microvascular response was not assessed. Overall, it remains to be demonstrated whether improving capillary recruitment by endothelial insulin signaling or direct stimulation of smooth muscle tissue may serve as an attractive preventive or therapeutic approach to bypass cellular resistance to glucose disposal.

In conclusion, vascular insulin resistance leads to blunted capillary recruitment in the skeletal muscle and may lead to diminished glucose uptake due to a decreased capillary surface area for nutrient exchange. Up till now however it remains unclear if these processes are interrelated or occur in parallel. Evidence from animal studies suggest that vascular insulin resistance precedes diminished whole-body glucose uptake and myocellular impairments. This indicates a potential cause-effect relationship. In humans, however, this was never demonstrated. On the other hand, decreased capillary recruitment of skeletal muscle tissue could also protect muscle tissue from nutrient overload and shunt excess calories towards adipose tissue. Presently, it is unknown whether insulin redistributes blood flow from skeletal muscle to adipose tissue during hypercaloric conditions. Finally, it is unknown if stimulation of tissue perfusion with a pharmacological agent can restore whole-body glucose uptake is therefore an effective strategy in prevention or treatment of insulin resistance.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date May 30, 2017
Est. primary completion date May 30, 2017
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Male
Age group 18 Years to 30 Years
Eligibility Inclusion Criteria:

- Caucasian

- BMI 22-25 kg/m2

- Normal insulin sensitivity as estimated by Homeostasis Model Assessment (HOMA-IR)

- Normoglycemia as defined by fasting plasma glucose (FPG) <6.1 mmol/l

- Normoglycemia as defined by 2 h glucose <7.8 mmol/l during oral glucose tolerance test (OGTT)

- Normal diet pattern according to the Dutch guidelines for a healthy diet 2006

- Stable body weight (<3% weight change) during 6 months before enrolment in the study

Exclusion Criteria:

- Presence of any relevant disease

- Use of any relevant medication

- First-degree relative with type 2 diabetes

- Smoking

- Shift work

- A history of chronic glucocorticoids (GC) use or GC use < 3 months ago

- Excessive sport activities (more often than 3 hours per week)

Study Design


Intervention

Dietary Supplement:
Hypercaloric diet
Hypercaloric diet consisting of 60% excess calories based on resting energy expenditure (REE). Calories will be provided in the form of snacks in between the ad libitum meals. A subsequent hypocaloric diet will consist of 1.0x resting energy expenditure.
Other:
Normocaloric diet
Normocaloric diet

Locations

Country Name City State
Netherlands VU University Medical Center Amsterdam Noord-Holland

Sponsors (2)

Lead Sponsor Collaborator
VU University Medical Center Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA)

Country where clinical trial is conducted

Netherlands, 

References & Publications (8)

Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009 May;52(5):752-64. doi: 10.1007/s00125-009-1313-z. Epub 2009 Mar 13. Review. — View Citation

De Boer MP, Meijer RI, Wijnstok NJ, Jonk AM, Houben AJ, Stehouwer CD, Smulders YM, Eringa EC, Serné EH. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation. 2012 Jan;19(1):5-18. doi: 10.1111/j.1549-8719.2011.00130.x. Review. — View Citation

Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1982-8. doi: 10.1161/ATVBAHA.108.169722. Epub 2008 Sep 4. — View Citation

Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006 Apr 18;113(15):1888-904. Review. — View Citation

Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011 Mar 2;13(3):294-307. doi: 10.1016/j.cmet.2011.01.018. — View Citation

Paolisso G, Di Maro G, D'Amore A, Passariello N, Gambardella A, Varricchio M, D'Onofrio F. Low-dose iloprost infusion improves insulin action in aged healthy subjects and NIDDM patients. Diabetes Care. 1995 Feb;18(2):200-5. — View Citation

Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, Dey A, Rothermel B, Kim YB, Kalinowski A, Russell KS, Kim JK. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes. 2005 Dec;54(12):3530-40. — View Citation

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13;414(6865):799-806. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Microvascular Insulin Sensitivity Capillary recruitment by contrast-enhanced ultrasound. Baseline, 7-10 days after initiation of the hypercaloric diet, after the hypercaloric diet, after the subsequent hypocaloric diet
Secondary Whole Body Insulin Sensitivity M-value by euglycemic-hyperinsulinemic clamp Baseline, 7-10 days after initiation of the hypercaloric diet, after the hypercaloric diet,
See also
  Status Clinical Trial Phase
Recruiting NCT04101669 - EndoBarrier System Pivotal Trial(Rev E v2) N/A
Recruiting NCT04243317 - Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults N/A
Terminated NCT03772886 - Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball N/A
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Recruiting NCT06019832 - Analysis of Stem and Non-Stem Tibial Component N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Recruiting NCT04575194 - Study of the Cardiometabolic Effects of Obesity Pharmacotherapy Phase 4
Completed NCT04513769 - Nutritious Eating With Soul at Rare Variety Cafe N/A
Withdrawn NCT03042897 - Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Recruiting NCT05917873 - Metabolic Effects of Four-week Lactate-ketone Ester Supplementation N/A
Active, not recruiting NCT04353258 - Research Intervention to Support Healthy Eating and Exercise N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Completed NCT01870947 - Assisted Exercise in Obese Endometrial Cancer Patients N/A
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Recruiting NCT05371496 - Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction Phase 2