View clinical trials related to Neuroma, Acoustic.
Filter by:People who have neurofibromatosis type 2 (NF2) can have tumors that grow on the auditory nerves and cause hearing loss. These tumors are called vestibular schwannomas (VSs), or acoustic neuromas. People with NF2 can also get schwannomas in other parts of their body, as well as tumors called meningiomas and ependymomas. Because VSs can cause hearing loss, many people with NF2 will have treatment to preserve their hearing. This treatment usually involves surgery. Because surgery has risks and is not able to help everyone with VSs, other methods of treatment are being explored. One area of exploration is looking to see if there is a drug that can be taken that might prevent the VSs from growing larger and causing hearing loss or brainstem compression. This study is exploring whether a drug that is approved by the FDA and is currently used to treat other tumors might also work to treat VSs. Based on people who have taken this drug to treat VSs already, there is some reason to think that it might be helpful to certain people with NF2. People enrolled in this study will receive the drug one time every three weeks for one year by infusion. This study will follow subjects over the course of the year that the person is taking the drug and for six months after the drug is stopped. This study is recruiting people who have NF2 and are currently having symptoms of tinnitus, dizziness, and/or hearing loss from their VSs. If you have NF2 and are currently having symptoms caused by your VSs, you may be eligible to participate.
Acoustic Neuromas (otherwise known as Vestibular Schwannoma -VS) are benign tumors which grow on the hearing nerve and can cause progressive hearing loss and compression of vital brain structures and even death if it continues. The primary objective of this study is to evaluate the efficacy of Nilotinib in the treatment of patients with progressing VS. Secondary objectives of this study is to evaluate the toxicity profile, quality of life and symptom management of Nilotinib in the treatment of patients with progressing VS.
In this research study we are looking at another type of radiation called proton radiation which is known to spare surrounding normal tissues from radiation. The proton radiation will be delivered using fractionated stereotactic radiotherapy (FSRT) to improve localization of the small tumor target. Proton radiation delivers minimal radiation beyond the area of the tumor. This may reduce side effects that patients would normally experience with conventional radiation therapy. In this research study, we are looking to determine the effects of fractionated proton radiotherapy on long-term hearing preservation and controlling tumor growth.
The investigators study is to investigate safety and efficacy of performing a planned incomplete removal of large acoustic neuroma tumors to decrease surgical morbidity and yet avoid tumor recurrence by post-operative radiation therapy.
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase II trial is studying how well bevacizumab works in treating patients with recurrent or progression meningiomas.
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
A recent study by Plotkin et al. showed that bevacizumab (Avastin) treatment was followed by clinically meaningful hearing improvement, tumor-volume reduction, or both in some, but not all, patients with Vestibular Schwannoma (VS) who were at risk for complete hearing loss or brain-stem compression from growing VS. Because of the promising results in preliminary studies of Bevacizumab and because of significant experience with the safety of the dosages proposed in this study, this study will offer a safe treatment for patients with VS. Therefore, this phase I clinical research trial will test the hypothesis that Bevacizumab can be safely used by direct intracranial superselective intraarterial infusion up to a dose of 10mg/kg to ultimately enhance survival and hearing function of patients with VS.
The purpose of this study is to determine if Lapatinib has any effect on tumors found in patients with Neurofibromatosis Type 2 (NF2). NF2 is a condition that mainly affects the skin and nervous system. It causes non-cancerous tumors (which are known as neuromas) to grow on the nerves around a person's body. Some signs of NF2 include a gradual loss of hearing and tumors growing on the skin, the brain and the spinal cord which can lead to complications. Lapatinib is an oral drug that is approved by Food and Drug Administration (FDA) for other types of tumors, it is not approved by the FDA for treatment of NF2 related tumors. The investigators know a lot about how well it is tolerated, but the investigators do not know if it is effective in treating your condition, therefore it is considered to be an investigational medication. This study will test whether Lapatinib may shrink tumors commonly found in patients with NF2 or stop them from growing. This will help us to decide if Lapatinib should be used to treat NF2 patients in future. Lapatinib is a drug that has been used for over 10 years to treat various forms of cancer. It has not been studied for the treatment of tumors in NF2 patients.
Tumors can grow on the auditory nerves and can cause hearing loss. A common type of tumor that does this is a vestibular schwannoma (VS), or acoustic neuroma. These tumors are not cancerous. Most often, people have only one VS. Occasionally, people have more than one VS and may have a condition called neurofibromatosis type 2 (NF2). Because VS can cause hearing loss, many people with VS will have treatment to preserve their hearing. This treatment usually involves surgery or radiation therapy. There are risks to these procedures, and sometimes they do not work to prevent hearing loss. Because surgery and radiation have risks and are not able to help everyone with VS, other methods of treatment are being explored. One area of exploration is looking to see if there is a drug that can be taken that might prevent the VS from growing larger and causing hearing loss, and might possibly even cause the VS to shrink in size. This study is exploring whether a drug that is approved by the FDA and is currently used to treat breast cancer might also work to treat VS. This study will measure the amount of drug that travels from the bloodstream and arrives at the tumor. This drug is safe and has few side effects. If this drug is shown to reach the tumor, it might be used in the future to treat VS without needing surgery or radiation. This study is recruiting people who are having surgery for VS. If you are going to have surgery to treat a VS, you may be eligible to participate.
The purpose of this study is to determine whether exercises relieve the symptoms of dizziness and imbalance in people with vestibular deficits and improves the ability to see clearly during head movements. We hypothesize that the performance of specific adaptation and substitution exercises will result in an improvement in visual acuity during head movements while those patients performing placebo exercises will show no improvement.