View clinical trials related to Nervous System Neoplasms.
Filter by:RATIONALE: Drugs used in chemotherapy, such as hydroxychloroquine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving hydroxychloroquine together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of hydroxychloroquine when given together with radiation therapy and temozolomide and to see how well they work in treating patients with newly diagnosed glioblastoma multiforme.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether radiation therapy and temozolomide are more effective than radiation therapy alone in treating glioblastoma multiforme. PURPOSE: This randomized phase III trial is studying radiation therapy and temozolomide to see how well they work compared with radiation therapy alone in treating patients with newly diagnosed glioblastoma multiforme.
This phase I trial is studying the side effects and best dose of vandetanib when given together with radiation therapy in treating young patients with newly diagnosed diffuse brain stem glioma.
RATIONALE: Drugs used in chemotherapy, such as cisplatin, ifosfamide, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. PURPOSE: This phase II trial is studying the side effects and how well giving combination chemotherapy together with pegfilgrastim works in treating patients with previously untreated germ cell tumors.
RATIONALE: Collecting fluid from a brain tumor using a small catheter may help doctors learn how much methotrexate gets into the tumor to kill the tumor cells. It may also help doctors learn how methotrexate works in the brain and in the rest of the body. PURPOSE: This clinical trial is studying how much methotrexate gets into the brain tumor by collecting fluid directly from the tumor through a small catheter in patients undergoing stereotactic biopsy for recurrent high-grade glioma.
RATIONALE: Donepezil may decrease the side effects caused by radiation therapy to the brain. PURPOSE: This clinical trial is studying how well donepezil works in treating young patients with primary brain tumors previously treated with radiation therapy to the brain.
RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.
This study is using the combination of radiation and antiangiogenic agents (agents that destroy existing blood vessels) seems to be an approach to tumor cure.
RATIONALE: Drugs used in chemotherapy, such as O(6)-benzylguanine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase II trial is studying the side effects and how well giving O(6)-benzylguanine together with temozolomide works in treating patients with glioblastoma multiforme that did not respond to previous temozolomide and radiation therapy.
RATIONALE: Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Studying samples of cerebrospinal fluid and blood from patients with cancer in the laboratory may help doctors learn how pemetrexed disodium works in the body and identify biomarkers related to cancer. PURPOSE: This clinical trial is studying the side effects and how well pemetrexed disodium works in treating patients with leptomeningeal metastases.