View clinical trials related to Metabolic Diseases.
Filter by:The goal of this study is to compare the impact of a SMART ((specific, measurable, attainable, realistic, or timely) Goal setting protocol on body weight, metabolic parameters (Hemoglobin A1c, lipids), diet quality and physical activity frequency in obese children with prediabetes in the outpatient setting. The main question is if participants using the SMART Goal Setting Protocol (SGSP) will have a significant reduction. The participants randomized to the study group will receive the SGSP, consisting of the SMART Goal Selection Guide (SGSG) and Weekly Goal Monitoring Tool (WGMT), in BMI Z-score, A1c, and dyslipidemia in 6 months compared to controls.
The goal of PrepareD is to examine whether the prepregnancy weight-loss intervention administered during the Prepare trial [NCT02346162] has an influence in the postnatal period. PrepareD is a cohort study (no intervention) that will address new specific aims through one in-person visit with mothers and children, dietary recalls, actigraphy, and the use of medical record weights. The goal is to collect data when the child is 3 years old. However, due to the COVID-19 pandemic, the investigators expanded the data collection window in order to collect data up to when the child is 5 years old. The investigators hypothesize that intervening on women before pregnancy is the key to breaking the multigenerational cycle of obesity.
The objective of this research was to investigate the impact of Omega-3 PUFAs on the gut microbiota and serum lipid metabolites in participants diagnosed with type 2 diabetes, employing high-throughput sequencing technology and untargeted lipidomics.
SchizOMICS is a Phase IV, multicenter, dose-flexible, open-label, randomized controlled clinical trial to evaluate the efficacy and safety of aripiprazole versus paliperidone using multi-omics data in patients with a first psychotic episode. The trial will include a total of 244 patients, with two arms of treatment with paliperidone and aripiprazole (1:1). The main objectives of the study are: 1. To compare the efficacy and safety of aripiprazole and paliperidone in the treatment of first episode psychosis (FEP) subjects in real-world clinical settings at 3 months. 2. To elucidate whether non-responders after 3 months of adequate treatment may display different molecular signatures at baseline based on multi omics data and systems biology analysis. 3. To uncover whether the appearance of side effects after 1 year of adequate treatment may be related to different molecular signatures based on multi-omics data and lifestyle phenotype using systems biology analysis.
The goal of this clinical trial is to explore the role of wheat and corn germ blended oils in regulating oxidative stress and immunomodulation in dyslipidaemic populations, to explore their effects on intestinal flora, antioxidant and immunomodulation. The main questions it aims to answer are: - How does phytosterol-rich wheat corn germ blended oil affect oxidative stress and immune function in dyslipidaemic people compared to peanut oil? - How does phytosterol-rich wheat corn germ blended oil affect serum metabolites, serum fatty acid profile, and intestinal flora in dyslipidaemic populations compared to peanut oil? What are the specific mechanisms involved? Participants will be randomly assigned to the intervention and control groups, the packaging of germ oil and peanut oil will have a uniform appearance, and participants will be instructed to replace their household cooking oils with the distributed cooking oil for three months, in addition to replacing all the canteens in the staff units with the trial oil for more than three months. Participants did not know who was the control oil, germ oil or peanut oil, and both were randomly distributed to different groups of participants by the third-party supervisors. Researchers will compare peanut oil to see if phytosterol-rich germ oil can improve oxidative stress and immune function in dyslipidaemic populations, in addition to exploring possible underlying mechanisms of improvement using multi-omics techniques.
Muscle tissue consists of proteins. These proteins are built up of small building blocks: amino acids. By consuming enough protein through the diet, the body is provided with enough amino acids to facilitate muscle protein building. Providing the growing world population with sufficient animal-derived protein is a challenge. Plant proteins can be produced on a more sustainable commercial scale than conventional animal-derived proteins and therefore can contribute to feeding our future population. Canola protein is a protein that is derived from rapeseed. The composition of canola seems to be comparable to that of other high-quality animal based protein sources. However, the collection of canola protein from rapeseed occurs in a special way. These treatment processes might affect canola protein digestion. The goal of this study is to investigate the most optimal way of canola protein processing on blood plasma amino acid responses. Primary objective: To assess the impact of canola protein processing on 5h postprandial plasma total amino acid incremental area under the curve (iAUC) in vivo in healthy young females. Hypothesis: it is hypothesized that the ingestion of 20g processed canola will result in greater 5h postprandial plasma total amino acid iAUC in vivo in healthy young females, when compared to the ingestion of 20g native canola protein isolate.
Dietary interventions have been consistently proposed as a part of a comprehensive strategy to lower the incidence and severity of atherosclerosis and coronary vascular disease. Excessive comsumption of fats enriched in saturated fatty acids (SFAs) is associated with an increased risk of atherosclerosis and other cardiovascular diseases (CVD). In contrasts, replacement of SFAs with monounsaturated fatty acids (MUFAs) and omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) has been reported to be inversely associated with risk of atherosclerosis. This is partly due to the ability of MUFAs (and ω3-LCPUFAs) to modulate lipoprotein composition, oxidation state, and consequently their functionality, among others. While most of the nutritional studies have focused on elucidating the mechanisms by which dietary fats affect lipoprotein particles, little or nothing is known about the regulatory effect of dietary fatty acids on extracellular vesicles (EVs). EVs are small phospholipid particles that convey molecular bioactive cargoes and play essential roles in intercellular communication and, hence, a multifaceted role in health and disease. For the first time, the purpose of this project is to establish whether the type of major fatty acids present on a diet (SFAs, MUFAs, or ω3-LCPUFAs) may alter the structure, cargo, and functionality of postprandial- and long-term-EVs. In the precision nutrition era, the investigators expect to offer a new insight on EVs and their relationship with dietary fatty acids through the following objectives: 1) To map changes in the lipidome, proteome, microtranscriptome, and functional properties of circulating EVs in healthy subjects and patients with metabolic syndrome (MetS) both at fasting and at postprandial state upon a challenge of a meal rich in SFAs, MUFAs, and ω3-LCPUFAs; 2) To analyse the contribution of postprandial triacylglyceride-rich lipoproteins (TRL) on EVs-mediated intercellular communication in a fatty acid-dependent manner; and 3) To determine the influence of diets rich in SFAs, MUFAs, and ω3-LCPUFAs on EVs in an animal model of atherosclerosis in the setting of MetS. Collectively, this project will provide fundamental insight into EV biology, and remarks the clinical and functional relevance and divergent consequences of dietary fatty acids in health and disease.
When all the food we eat is digested, it will increase blood glucose. Two people can have different glucose blood levels to the same food and one reason can be bacteria live in our gut. There are more than a thousand bacteria species in our gastrointestinal tract that have an important role in the proper functioning of our body, so our gut microbiome is a key piece for our nutrition and blood glucose control. Nowadays, one of the major public health concerns is the rise of people with diabetes (a disease characterized by an increase in blood glucose) and the increase in obesity, in which one of several risks is diabetes. There are multiple reasons for people develop those diseases, however, some care on diet management can prevent, delay, or improve the effects of these illnesses. Therefore, this study proposes studying the blood glucose variation between healthy volunteers and if there is a relationship between that variation and the intestinal bacteria present. These results can help doctors and nutritionists elaborate a personalized diet for people who need blood glucose level control. The investigators are recruiting volunteers aged 18 to 60, healthy, living at Florianopolis and the surroundings to participate in this crossover randomized N-of-1 study. The participants must collect fecal samples. After collection, the participants will meet the investigators and receive a kit containing ten standardized breakfasts, with two kinds of muffins, and a kit containing a glucose monitor (Abbott Freestyle Libre-CE marked) to monitor their blood sugar levels. The volunteers must have breakfast with the standardized meals and monitor the fasting glucose blood and postprandial glucose blood levels for ten consecutive days. Besides, they must take notes (like a diet diary) about all the food they ingest during the day in ten days of the study.
To collect lab data from capillary and venous blood specimens for use in analytical research studies to support the development and validation of laboratory procedures.
Cardiovascular disease (CVD) is common, deadly, and costly, and adults with insomnia represent a large group of people at elevated risk of developing CVD in the future. This clinical trial will determine if our updated insomnia treatment, called the SHADES intervention, improves CVD factors thought to explain how insomnia promotes CVD and if these improvements are due to positive changes in sleep factors. A total of 200 primary care patients with insomnia and CVD risk factors will be randomized to 6 months of the SHADES intervention (internet, telephonic, and/or face-to-face cognitive-behavioral therapy for insomnia) or the active control condition (sleep education/hygiene, symptom monitoring, and primary care for insomnia). Before and after treatment, participants will complete measurements of the CVD factors (systemic inflammation, autonomic dysfunction, metabolic dysregulation, proinflammatory gene expression) and the sleep factors (insomnia symptoms, sleep onset latency, wake after sleep onset, sleep efficiency). Researchers will test whether the SHADES intervention produces greater improvements in the CVD factors than the active control condition.