View clinical trials related to Lymphoma.
Filter by:Return to work (RTW) of patients after cancer treatment has been a topic of growing interest for the past two decades. Advances in cancer care have led to better patient survival, with some cancers considered as chronic or even cured diseases. The return of patients to their "pre-cancer life" can thus become an objective. Indeed, RTW after cancer is associated with improved quality of life for patients in several studies (improved financial status, improved social contacts, return of functional abilities and improved self-esteem). However, many difficulties can interfere with RTW. Many factors have been identified: disease, treatment, patient and occupational factors. The feeling of "return-to-work self-efficacy" is one of the main psychological determinants and its interest has been recently demonstrated in oncology. It corresponds to a cognitive mechanism based on expectations and/or beliefs of an individual about being able to carry out the actions required to achieve a goal, in this case RTW. The majority of studies on RTW concerns solid cancer and are retrospective. Very few studies have focused on hematological malignancies, whose prognosis was, until recently, worse. Moreover, very few interventional studies exist. There is therefore a significant need for prospective studies with appropriate methodological tools to reliably assess the benefit of interventional measures on RTW. The investigators propose to conduct a prospective, comparative, randomized, multicenter study evaluating the impact of an early RTW-consultation in patients who have been treated for a hematological malignancy. The investigators hypothesize that this consultation will improve patients' RTW rates and RTW quality.
The purpose of this study is to evaluate the safety and preliminary efficacy of ATA3219 in participants with relapsed/refractory (R/R) B-cell non-Hodgkin Lymphoma (NHL).
A multicenter, prospective, randomized, open-label, controlled trial to evaluate the efficacy and safety of chidamide, anti-PD1 antibody, and pegaspargase versus dexamethasone, cisplatin, gemcitabine, and pegaspargase (DDGP) in the treatment of newly diagnosed, stage III to IV extranodal natural killer/T-cell lymphoma.
This clinical trial is studying lymphoma. Lymphoma is a cancer that starts in the blood cells that fight infection. There are several types of lymphoma. This study will enroll people who have classical Hodgkin lymphoma (cHL), peripheral T cell lymphoma (PTCL), or diffuse large B cell lymphoma (DLBCL). This clinical trial uses a drug called SGN-35C . The study drug is in testing and has not been approved for sale. This is the first time SGN -35C will be used in people. This study will test the safety of SGN-35C in participants with lymphoma. It will also study the side effects of this drug. A side effect is anything a drug does to the body besides treating the disease. This study will have three parts. Parts A and B of the study will find out the best dose and dosing schedule for SGN-35C. Part C will use the dose found in parts A and B to find out how safe SGN-35C is and if it works to treat select lymphomas.
The goal of this clinical study is to learn more about KTE-X19, and how safe and effective it is in adult Japanese participants with relapsed/refractory (r/r) Mantle Cell Lymphoma (MCL) or r/r B-precursor Acute Lymphoblastic Leukemia (B-ALL). The primary objectives of this study are to evaluate the efficacy of KTE-X19, as measured by: - Objective response rate (ORR) per investigator assessment, in adult Japanese participants with r/r MCL - Overall complete remission (OCR) defined as complete remission (CR) and complete remission with incomplete hematologic recovery (CRi) per investigator assessment, in adult Japanese participants with r/r ALL
This phase II trial tests the safety and effectiveness of glofitamab given in combination with pirtobrutinib in treating patients with mantle cell lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Glofitamab and obinutuzumab are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Obinutuzumab may also reduce the risk of immune-related conditions from treatment. Pirtobrutinib is in a class of medications called kinase inhibitors. It works by blocking the action of the protein that signals cancer cells to multiply. Giving glofitamab in combination with pirtobrutinib may be safe, tolerable and/or effective in treating patients with relapsed or refractory mantle cell lymphoma.
This is an open-label, multicentre Phase Ib study to evaluate the safety and preliminary efficacy of new generation Bruton Tyrosine Kinase inhibitor Rocbrutinib in combination to R-CHOP (Rituximab, Cyclophosphamide, Doxorubicin, Vincristin, Prednison) in adult patients with newly diagnosed, previously untreated B-cell Non-Hodgkin Lymphoma [Diffuse Large B-cell Lymphoma (DLBCL), Marginal Zone Lymphoma (MZL) or Mantle Cell Lymphoma (MCL)].
This phase Ib/II clinical trial tests the safety, side effects, and effectiveness of mosunetuzumab with chemotherapy for the treatment of patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as mosunetuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as etoposide, doxorubicin, vincristine, cyclophosphamide and prednisone work in different ways to stop the growth of cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving mosunetuzumab with chemotherapy may be safe, tolerable and/or effective in treating patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma.
CAR-T cell therapy is a type of treatment for people with certain lymphomas. T-cells are white blood cells that help to fight infections. CAR-T cell therapy improves the body's T-cells to help them better fight cancer cells. ASP2802 is a type of CAR-T cell therapy given with MA-20. MA-20 is a protein that helps the CAR-T cell therapy work inside the body. Before ASP2802 is available as a treatment, the researchers need to understand how it is processed by and acts upon the body. This information will help find a suitable dose for future studies and check for potential medical problems from the treatment. In this study, ASP2802 is being tested in humans for the first time. ASP2802 has already been tested in the laboratory and in animals. This is the standard way new potential treatments are developed. People taking part in this study will be adults with CD20-positive B-cell lymphomas. CD20 is a protein found on a type of white blood cell called a B-cell. Some people with B-cell lymphomas have more CD20 on these cells. Their cancer will have come back after it had disappeared with earlier therapy (relapsed) or it will have become resistant to previous treatment (refractory). The main aims of the study are to check the safety of ASP2802, how well it is tolerated, and to find a suitable dose of ASP2802. This is an open-label, adaptive study. Open-label means that people in this study and clinic staff will know that people will receive ASP2802 treatment. Adaptive means the treatments may change, depending on earlier results in the study. There will be 3 groups of people in this study and 3 doses of ASP2802. Groups A, B and C will receive ASP2802 treatment. Group A will start treatment first with a low dose of ASP2802. If Group A tolerates the low dose of ASP2802, then Group B will receive the higher dose of ASP2802. If Group B tolerates the higher dose of ASP2802, then Group C will receive the highest dose of ASP2802. There are several steps in this treatment. First, T-cells are removed from the blood by inserting a small tube (cannula) into a vein and connecting it to a machine that separates out the blood cells. The machine collects the T-cells and returns the rest of the blood cells back into the bloodstream. The collected T-cells are sent to the lab to be changed into improved T-cells (with ASP2802) to fight the cancer. This may take several weeks, so people in the study may receive extra treatment, to keep the cancer under control during this time. Before the improved T-cells go back in the body, people will visit the clinic so that the study doctors can do a series of checks to make sure they are well enough to receive the T-cells. A few days before the improved T-cells go back into the body, people in the study will have chemotherapy for 3 days. This is to make sure the cancer is at its lowest level before people are treated with ASP2802. Then, the improved T-cells are fed back into the bloodstream using a drip attached to the cannula. After this, a booster of MA-20 will be given at the set dose by infusion on Day 3 and Day 17 in a 28-day cycle. If people respond well to treatment, they may stay on the same dose during the next cycle; if they have medical problems from the treatment, they may get a lower dose during the next cycle. The next group of people may receive a different dose (higher or lower) of MA-20 depending on the results from the previous group. People in the study will continue receiving MA-20 in this way until: they have certain medical problems from the treatment on the lowest dose of MA-20; they start other cancer treatment; their cancer gets worse; they or the study doctor decides they should stop treatment; they do not come back for treatment. After treatment has finished, people in the study will visit the clinic regularly for 2 years and continue to be monitored for up to 15 years. Some people may be treated again with MA-20. This may happen for people who have responded to treatment and then relapse within a year, or for people that have a partial response and have a slow growing lymphoma. During the study, people will visit the study hospital many times. During most visits, the study doctors will do a medical examination, blood tests and check vital signs. Vital signs include temperature, breathing rate, blood pressure, blood oxygen levels, and heart rate. They will also check for medical problems. In some visits, computerized tomography (CT) scans and electrocardiograms (ECGs) to check the heart rhythm will also be done. People will have several hospital stays during their treatment. This may be during their chemotherapy, then from Days -1 to 7 and Days 17 to 21 during the cycle 1 of MA-20. Day -1 means 1 day before treatment with ASP2802. During this time, people will be closely monitored for medical problems, have EGCs and have a biopsy taken. During the extra cycles of MA-20, there will be the option of staying overnight.
This phase II trial tests how well venetoclax, rituximab and nivolumab works in treating patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) with Richter's transformation. Richter's transformation can be described as the development of an aggressive lymphoma in the setting of underlying CLL/SLL that has a very poor prognosis with conventional therapies and represents a significant unmet medical need. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Immunotherapy with monoclonal antibodies, such as rituximab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Giving venetoclax, rituximab and nivolumab together may work better than the conventional intensive immunochemotherapy to improve disease control in patients with Richter's transformation arising from CLL/SLL.