Clinical Trials Logo

Clinical Trial Summary

Primary Objective:

- To determine if there is significant toxicity associated with the administration of CD34-TK75 transduced donor lymphocytes after allogeneic BMT for relapsed hematologic malignancies

Secondary Objectives:

- To determine if the patient develops any evidence of anti-leukemic effect from the administration of CD34-TK75 transduced donor lymphocytes

- To determine if ganciclovir administration to patients who develop Graft versus Host Disease (GVHD)results in clinical improvement after infusions of CD34-TK75 transduced lymphocytes.

Sub-Study Objective

The primary purpose is to perform PET imaging of CD34-TK transduced allogeneic donor T cells in patients who have relapsed hematologic malignancies after allogeneic hematopoietic stem cell transplantation (SCT). At this time the limited amount of cGMP quality virus produced by the NGVL will likely permit the imaging of only 3 patients. Consequently our current objective will be to establish that the TK-expressing cells can be detected by 18FHBG-PET in patient organs relevant for performing additional studies that are currently in the planning stages and for which we are working to produce additional virus.

The ultimate objective will be to use the TK substrate 18FHBG to locate the donor T cells within the recipient as they exert anti-leukemic effects, and the T cells can then be eliminated in response to in vivo administration of ganciclovir, before morbidity and mortality from GvHD occurs. We will use the imaging strategy to define patterns of T cell trafficking in humans pre and post-DLI infusion, and to determine where the cells reside while they mediate GVL in contrast to GvHD. We expect to obtain in vivo PET imaging markers predictive of GvHD before clinical symptoms occur.


Clinical Trial Description

This is a phase I study of to determine the safety of the administration of lymphocytes, collected from the bone marrow donor. Donor lymphocytes are often administered in the case of a relapsed cancer after allogeneic bone marrow transplantation, in the hope to reduce the amount or size of the relapsed cancer. In this study, we will look for a decrease of the size of the relapsed cancer.

By inserting genetic material (DNA) into the cells (lymphocytes) collected from the donor, these cells will be genetically modified and made very sensitive to the killing effects of a drug called ganciclovir, routinely used in the clinic after bone marrow transplantation to treat virus infections in transplant patients.

This research study is to determine, if administration of the drug ganciclovir to the recipient, after intravenous infusion of the genetically modified cells (lymphocytes) into the recipient, will reduce or even eliminate a life threatening complication of allogeneic transplantation, called graft versus host disease (GvHD). The drug ganciclovir will kill the infused genetically modified donor cells (lymphocytes) so they cannot cause GvHD.

In summary, the overall purpose of this research study is to determine, if administration of a seven day course of the drug ganciclovir to the donor lymphocyte recipient will either decrease the severity of GvHD, or will decrease the number of cases with life-threatening GvHD after donor lymphocyte infusions.

This study will also determine if insertion of a small piece of DNA (a small piece of genetic material), makes these donor lymphocytes opened up and sensitive to the killing effects of the drug ganciclovir, but at the same time does not harm the lymphocytes' ability to reduce the amount or size of the cancer in the recipient. The DNA to be inserted into the donor lymphocytes is transported into these cells by a type of virus called "retrovirus vector". This retrovirus vector is made so the virus cannot divide (cannot make more of itself), and cannot make cells or the recipient sick. Retroviruses do, however, allow for the gene (DNA) they are carrying, to be permanently inserted into the genetic material of the donor lymphocytes. Therefore, this inserted DNA will persist in the donor lymphocytes for the life of the lymphocytes.

Finally, this study will also determine if the administration of genetically manipulated donor lymphocytes is well tolerated.

Sub Study

The goal of this subproject is to see if an imaging procedure called 18FHBG-PET/CT can help us see if the lymphocytes you received have gone to the sites in the body where the anti-cancer effects are taking place. ;


Study Design

Endpoint Classification: Safety/Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00871702
Study type Interventional
Source Washington University School of Medicine
Contact
Status Completed
Phase Phase 1
Start date October 2010
Completion date November 2012

See also
  Status Clinical Trial Phase
Recruiting NCT05027594 - Ph I Study in Adult Patients With Relapsed or Refractory Multiple Myeloma Phase 1
Completed NCT02412878 - Once-weekly Versus Twice-weekly Carfilzomib in Combination With Dexamethasone in Adults With Relapsed and Refractory Multiple Myeloma Phase 3
Completed NCT01947140 - Pralatrexate + Romidepsin in Relapsed/Refractory Lymphoid Malignancies Phase 1/Phase 2
Recruiting NCT05971056 - Providing Cancer Care Closer to Home for Patients With Multiple Myeloma N/A
Recruiting NCT05243797 - Phase 3 Study of Teclistamab in Combination With Lenalidomide and Teclistamab Alone Versus Lenalidomide Alone in Participants With Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation Phase 3
Active, not recruiting NCT04555551 - MCARH109 Chimeric Antigen Receptor (CAR) Modified T Cells for the Treatment of Multiple Myeloma Phase 1
Recruiting NCT05618041 - The Safety and Efficay Investigation of CAR-T Cell Therapy for Patients With Hematological Malignancies N/A
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Completed NCT02916979 - Myeloid-Derived Suppressor Cells and Checkpoint Immune Regulators' Expression in Allogeneic SCT Using FluBuATG Phase 1
Recruiting NCT03570983 - A Trial Comparing Single Agent Melphalan to Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) as a Preparative Regimen for Patients With Multiple Myeloma Undergoing High Dose Therapy Followed by Autologous Stem Cell Reinfusion Phase 2
Terminated NCT03399448 - NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells) Phase 1
Completed NCT03665155 - First-in- Human Imaging of Multiple Myeloma Using 89Zr-DFO-daratumumab, a CD38-targeting Monoclonal Antibody Phase 1/Phase 2
Completed NCT02812706 - Isatuximab Single Agent Study in Japanese Relapsed AND Refractory Multiple Myeloma Patients Phase 1/Phase 2
Active, not recruiting NCT05024045 - Study of Oral LOXO-338 in Patients With Advanced Blood Cancers Phase 1
Recruiting NCT03989414 - A Study to Determine the Recommended Dose and Regimen and to Evaluate the Safety and Preliminary Efficacy of CC-92480 in Combination With Standard Treatments in Participants With Relapsed or Refractory Multiple Myeloma (RRMM) and Newly Diagnosed Multiple Myeloma (NDMM) Phase 1/Phase 2
Active, not recruiting NCT03792763 - Denosumab for High Risk SMM and SLiM CRAB Positive, Early Myeloma Patients Phase 2
Withdrawn NCT03608501 - A Study of Ixazomib, Thalidomide and Dexamethasone in Newly Diagnosed and Treatment-naive Multiple Myeloma (MM) Participants Non-eligible for Autologous Stem-cell Transplantation Phase 2
Recruiting NCT04537442 - Clinical Study to Evaluate the Safety and Efficacy of IM21 CAR-T Cells in the Treatment of Elderly Patients With Relapsed or Refractory Multiple Myeloma Phase 1
Completed NCT02546167 - CART-BCMA Cells for Multiple Myeloma Phase 1