Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT04792294
Other study ID # 1541/2020
Secondary ID
Status Active, not recruiting
Phase
First received
Last updated
Start date January 1, 2005
Est. completion date December 31, 2021

Study information

Verified date March 2021
Source Medical University of Vienna
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Lung transplantation is an established therapy for end-stage lung disease such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis and pulmonary hypertension. However, Chronic Lung Allograft Dysfunction (CLAD) is a major cause of morbidity and mortality in long-term survivors. The 5-year survival rate is reported to be 50%, which is considerably inferior compared to other solid organ transplantation. In addition, the financial burden of CLAD (around 80.000 euro/year for a patient with CLAD) is considerable. No curative therapy is available yet. To date, the two most effective treatment are azithromycin and extracorporeal photopheresis. Azithromycin is used as first-line treatment and it is effective in stopping FEV1 decline, however its effects are only limited to a set of patients. ECP can be used as second-line treatment in patients unresponsive to azithromycin. ECP has been firstly developed for treatment of cutaneous T cell lymphomas and later used in a variety of other indications including solid organ transplantation. The process starts with leukapheresis, followed by incubation of the isolated cells with 8-methoxypsoralen (8-MOP) and subsequent activation of 8-MOP with ultraviolet A radiation. At the end, the cells are reinfused into the patient. 8-MOP is a biologically inert substance, but in the presence of UVA light it cross-links DNA by forming covalent bonds with pyrimidine bases and causes apoptosis. ECP is effective in the palliative treatment of cutaneous T-cell lymphoma but its effectiveness was also shown in several other T-cell-mediated diseases, particularly in the treatment and prevention of acute and chronic graft-versus-host disease. In depth knowledge on the mechanisms whereby ECP manipulates the immune system are still unclear. Most of the experimental studies have been performed in murine models of GvHD. Apoptotic cells isolated during ECP treatment have the potential to induce IL-10 secretion, reduce dendritic cells activation and increase percentage of Tregs. In addition, ECP reduces the production of IL-6 and TNF-α and increases TGF-β production. In lung transplantation, ECP treatment is used as second-line treatment of CLAD and it has the potential to stabilize lung function decline and to improve long-term graft. According to the published literature, however, approximately 30 to 40% of treated recipients did not profit from ECP. Greer and colleagues found that RAS patients as well as rapid lung function decliners showed lower rate of response and worse long-term outcomes. On the contrary in a more recent analysis only BOS diagnosis was associated with better outcomes. A single prospective interventional study was published by our group and it confirmed results from other previous retrospective analysis. Up to now, no clear predictors for response have been identified yet.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 800
Est. completion date December 31, 2021
Est. primary completion date December 31, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years to 70 Years
Eligibility Inclusion Criteria: Diagnosis of CLAD Adult transplant recipients (>18 years) Exclusion Criteria: ECP for other diagnosis Recipients of multi-organ transplantation Recipients of single lung transplantation

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Extracorporeal photopheresis
ECP can be used as second-line treatment in patients unresponsive to azithromycin. ECP has been firstly developed for treatment of cutaneous T cell lymphomas and later used in a variety of other indications including solid organ transplantation. The process starts with leukapheresis, followed by incubation of the isolated cells with 8-methoxypsoralen (8-MOP) and subsequent activation of 8-MOP with ultraviolet A radiation. At the end, the cells are reinfused into the patient. 8-MOP is a biologically inert substance, but in the presence of UVA light it cross-links DNA by forming covalent bonds with pyrimidine bases and causes apoptosis.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Medical University of Vienna

Outcome

Type Measure Description Time frame Safety issue
Primary Change in forced expiratory value in 1 second at 3 months after start of extracorporeal photopheresis Percentage change in FEV1 within 3 months after start of extracorporeal photopheresis 3 months
Secondary change in maximal expiratory flow (50%) at 3 months after start of extracorporeal photopheresis Percentage change in MEF50 within 3 months after start of extracorporeal photopheresis 3 months
Secondary Change in forced expiratory value in 1 second/dorced vital capacity ratio at 3 months after start of extracorporeal photopheresis Percentage change in FEV1/FVC within 3 months after start of extracorporeal photopheresis 3 months
Secondary Change in total lung capacity at 3 months after start of extracorporeal photopheresis Percentage change in TLC within 3 months after start of extracorporeal photopheresis 3 months
Secondary Patients' survival Patients' survival Within 5 years from start of extracorporeal photopheresis
Secondary Graft survival Graft survival Within 5 years from start of extracorporeal photopheresis
Secondary Adverse events on extracorporeal photopheresis Adverse events on extracorporeal photopheresis Within 5 years from start of extracorporeal photopheresis
See also
  Status Clinical Trial Phase
Enrolling by invitation NCT06309628 - Analysis of Volatile Organic Compounds in the Breath of Lung Transplant Rejection Patients Using Infrared Spectroscopy
Withdrawn NCT02893176 - Macitentan in the Treatment of Organ Rejection After Lung Transplantation Phase 4
Completed NCT02441413 - Transplant Optimization Using Functional Imaging (TROFI) N/A
Recruiting NCT05375149 - Exhaled Breath Particles in Lung Transplantation
Active, not recruiting NCT03967340 - PREdiction of Chronic LUng Allograft Dysfunction
Active, not recruiting NCT05260372 - Next Generation Sequencing to Detect Acute Rejection in Lung Transplant Patients.
Recruiting NCT06082037 - A Study to Test How Effective Belumosudil Tablets Are for Treating Adult Participants With Chronic Lung Allograft Dysfunction Phase 3
Recruiting NCT04714801 - Adipose Derived Mesenchymal Cell Treatment in Lungtransplantation Phase 1/Phase 2
Active, not recruiting NCT05170425 - LAMBDA 002 (Lung Registry) Study
Completed NCT02474927 - Combination Therapy With Carfilzomib for the Antibody-Mediated Rejection Diagnosis in Lung Transplantation Phase 2
Recruiting NCT05006742 - Comparison of Transbronchial Cryobiopsy and Forceps Biopsy in Lung Transplant Recipients N/A
Recruiting NCT02812290 - Diagnostic and Therapeutic Applications of Microarrays in Lung Transplantation
Not yet recruiting NCT03500575 - Extracorporeal Photopheresis in Lung Transplant Rejection for Cystic Fibrosis (CF) Patients N/A
Withdrawn NCT03805178 - Lung Transplant Plasmapheresis/Belatacept/Carfilzomib for Antibody Mediated Rejection and Desensitization Phase 2
Completed NCT03359863 - Pirfenidone for Restrictive Chronic Lung Allograft Dysfunction Phase 2
Active, not recruiting NCT03656926 - Efficacy + Safety of Liposome Cyclosporine A to Treat Bronchiolitis Obliterans Post Single Lung Transplant (BOSTON-2) Phase 3
Completed NCT01985412 - Genome Transplant Dynamics: Non-invasive Sequencing-based Diagnosis of Rejection
Completed NCT04234919 - Longitudinal Study of Cell Free DNA in Lung Transplant
Recruiting NCT04837339 - Diagnostic and Prognostic Biomarkers of Transplant Dysfunction in the Context of Lung Transplantation N/A
Recruiting NCT03090581 - Transbronchial Biopsies With Cryoprobe in Patients With Lung Transplantation. N/A